These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
140 related articles for article (PubMed ID: 38154280)
1. Rapid discrimination of quality grade of black tea based on near-infrared spectroscopy (NIRS), electronic nose (E-nose) and data fusion. Xia H; Chen W; Hu D; Miao A; Qiao X; Qiu G; Liang J; Guo W; Ma C Food Chem; 2024 May; 440():138242. PubMed ID: 38154280 [TBL] [Abstract][Full Text] [Related]
2. Cognitive spectroscopy for evaluating Chinese black tea grades (Camellia sinensis): near-infrared spectroscopy and evolutionary algorithms. Ren G; Sun Y; Li M; Ning J; Zhang Z J Sci Food Agric; 2020 Aug; 100(10):3950-3959. PubMed ID: 32329077 [TBL] [Abstract][Full Text] [Related]
3. Highly identification of keemun black tea rank based on cognitive spectroscopy: Near infrared spectroscopy combined with feature variable selection. Ren G; Wang Y; Ning J; Zhang Z Spectrochim Acta A Mol Biomol Spectrosc; 2020 Apr; 230():118079. PubMed ID: 31982655 [TBL] [Abstract][Full Text] [Related]
4. Rapid Characterization of Black Tea Taste Quality Using Miniature NIR Spectroscopy and Electronic Tongue Sensors. Ren G; Zhang X; Wu R; Yin L; Hu W; Zhang Z Biosensors (Basel); 2023 Jan; 13(1):. PubMed ID: 36671927 [TBL] [Abstract][Full Text] [Related]
5. Quality evaluation of Keemun black tea by fusing data obtained from near-infrared reflectance spectroscopy and computer vision sensors. Song Y; Wang X; Xie H; Li L; Ning J; Zhang Z Spectrochim Acta A Mol Biomol Spectrosc; 2021 May; 252():119522. PubMed ID: 33582437 [TBL] [Abstract][Full Text] [Related]
6. Fungal fermentation of Fuzhuan brick tea: A comprehensive evaluation of sensory properties using chemometrics, visible near-infrared spectroscopy, and electronic nose. Hu Y; Chen W; Gouda M; Yao H; Zuo X; Yu H; Zhang Y; Ding L; Zhu F; Wang Y; Li X; Zhou J; He Y Food Res Int; 2024 Jun; 186():114401. PubMed ID: 38729704 [TBL] [Abstract][Full Text] [Related]
7. Evaluation of Dianhong black tea quality using near-infrared hyperspectral imaging technology. Ren G; Wang Y; Ning J; Zhang Z J Sci Food Agric; 2021 Mar; 101(5):2135-2142. PubMed ID: 32981110 [TBL] [Abstract][Full Text] [Related]
8. Rapid and real-time detection of black tea fermentation quality by using an inexpensive data fusion system. Jin G; Wang YJ; Li M; Li T; Huang WJ; Li L; Deng WW; Ning J Food Chem; 2021 Oct; 358():129815. PubMed ID: 33915424 [TBL] [Abstract][Full Text] [Related]
9. The characterization of caffeine and nine individual catechins in the leaves of green tea (Camellia sinensis L.) by near-infrared reflectance spectroscopy. Lee MS; Hwang YS; Lee J; Choung MG Food Chem; 2014 Sep; 158():351-7. PubMed ID: 24731354 [TBL] [Abstract][Full Text] [Related]
10. Identification of Similar Chinese Congou Black Teas Using an Electronic Tongue Combined with Pattern Recognition. Huang D; Bian Z; Qiu Q; Wang Y; Fan D; Wang X Molecules; 2019 Dec; 24(24):. PubMed ID: 31842392 [TBL] [Abstract][Full Text] [Related]
11. Fingerprinting black tea: When spectroscopy meets machine learning a novel workflow for geographical origin identification. Li Y; Logan N; Quinn B; Hong Y; Birse N; Zhu H; Haughey S; Elliott CT; Wu D Food Chem; 2024 Apr; 438():138029. PubMed ID: 38006696 [TBL] [Abstract][Full Text] [Related]
12. Quality Evaluation of Green and Dark Tea Grade Using Electronic Nose and Multivariate Statistical Analysis. Yuan H; Chen X; Shao Y; Cheng Y; Yang Y; Zhang M; Hua J; Li J; Deng Y; Wang J; Dong C; Jiang Y; Xie Z; Wu Z J Food Sci; 2019 Dec; 84(12):3411-3417. PubMed ID: 31750940 [TBL] [Abstract][Full Text] [Related]
13. Rapid detection of ash content in black tea using a homemade miniature near-infrared spectroscopy. Ren G; Yin L; Wu R; Ning J Spectrochim Acta A Mol Biomol Spectrosc; 2024 Mar; 308():123740. PubMed ID: 38109803 [TBL] [Abstract][Full Text] [Related]
14. Moisture content monitoring in withering leaves during black tea processing based on electronic eye and near infrared spectroscopy. Chen J; Yang C; Yuan C; Li Y; An T; Dong C Sci Rep; 2022 Dec; 12(1):20721. PubMed ID: 36456868 [TBL] [Abstract][Full Text] [Related]
15. The qualitative and quantitative assessment of tea quality based on E-nose, E-tongue and E-eye combined with chemometrics. Xu M; Wang J; Zhu L Food Chem; 2019 Aug; 289():482-489. PubMed ID: 30955639 [TBL] [Abstract][Full Text] [Related]
16. Micro-NIR spectrometer for quality assessment of tea: Comparison of local and global models. Wang YJ; Li TH; Li LQ; Ning JM; Zhang ZZ Spectrochim Acta A Mol Biomol Spectrosc; 2020 Aug; 237():118403. PubMed ID: 32361319 [TBL] [Abstract][Full Text] [Related]
17. Identification of tea based on CARS-SWR variable optimization of visible/near-infrared spectrum. Yun L; Qing-Wei P; Jian-Cheng Y; Yan-Lin T J Sci Food Agric; 2020 Jan; 100(1):371-375. PubMed ID: 31577843 [TBL] [Abstract][Full Text] [Related]
18. Nondestructive measurement of total volatile basic nitrogen (TVB-N) in pork meat by integrating near infrared spectroscopy, computer vision and electronic nose techniques. Huang L; Zhao J; Chen Q; Zhang Y Food Chem; 2014 Feb; 145():228-36. PubMed ID: 24128472 [TBL] [Abstract][Full Text] [Related]
19. [Study on quality evaluation of Dafo Longjing tea based on near infrared spectroscopy]. Zhou XF; Ye Y; Zhou ZD; Qian YF Guang Pu Xue Yu Guang Pu Fen Xi; 2012 Nov; 32(11):2971-5. PubMed ID: 23387160 [TBL] [Abstract][Full Text] [Related]
20. Study on discrimination of Roast green tea (Camellia sinensis L.) according to geographical origin by FT-NIR spectroscopy and supervised pattern recognition. Chen Q; Zhao J; Lin H Spectrochim Acta A Mol Biomol Spectrosc; 2009 May; 72(4):845-50. PubMed ID: 19155188 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]