These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 38154396)

  • 21. Unsupervised Machine Learning for Assessment of Left Ventricular Diastolic Function and Risk Stratification.
    Chao CJ; Kato N; Scott CG; Lopez-Jimenez F; Lin G; Kane GC; Pellikka PA
    J Am Soc Echocardiogr; 2022 Dec; 35(12):1214-1225.e8. PubMed ID: 35840082
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Identifying clinical phenotypes in extremely low birth weight infants-an unsupervised machine learning approach.
    Matsushita FY; Krebs VLJ; de Carvalho WB
    Eur J Pediatr; 2022 Mar; 181(3):1085-1097. PubMed ID: 34734319
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Distinct Subtypes of Hepatorenal Syndrome and Associated Outcomes as Identified by Machine Learning Consensus Clustering.
    Tangpanithandee S; Thongprayoon C; Krisanapan P; Mao MA; Kaewput W; Pattharanitima P; Boonpheng B; Cheungpasitporn W
    Diseases; 2023 Jan; 11(1):. PubMed ID: 36810532
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Hypernatremia subgroups among hospitalized patients by machine learning consensus clustering with different patient survival.
    Thongprayoon C; Mao MA; Keddis MT; Kattah AG; Chong GY; Pattharanitima P; Nissaisorakarn V; Garg AK; Erickson SB; Dillon JJ; Garovic VD; Cheungpasitporn W
    J Nephrol; 2022 Apr; 35(3):921-929. PubMed ID: 34623631
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Machine Learning Consensus Clustering of Hospitalized Patients with Admission Hyponatremia.
    Thongprayoon C; Hansrivijit P; Mao MA; Vaitla PK; Kattah AG; Pattharanitima P; Vallabhajosyula S; Nissaisorakarn V; Petnak T; Keddis MT; Erickson SB; Dillon JJ; Garovic VD; Cheungpasitporn W
    Diseases; 2021 Aug; 9(3):. PubMed ID: 34449583
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Identification and Prediction of Clinical Phenotypes in Hospitalized Patients With COVID-19: Machine Learning From Medical Records.
    Velez T; Wang T; Garibaldi B; Singman E; Koutroulis I
    JMIR Form Res; 2023 Oct; 7():e46807. PubMed ID: 37642512
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Development and validation of parsimonious algorithms to classify acute respiratory distress syndrome phenotypes: a secondary analysis of randomised controlled trials.
    Sinha P; Delucchi KL; McAuley DF; O'Kane CM; Matthay MA; Calfee CS
    Lancet Respir Med; 2020 Mar; 8(3):247-257. PubMed ID: 31948926
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Achieving High Accuracy in Predicting the Probability of Periprosthetic Joint Infection From Synovial Fluid in Patients Undergoing Hip or Knee Arthroplasty: The Development and Validation of a Multivariable Machine Learning Algorithm.
    Paranjape PR; Thai-Paquette V; Miamidian JL; Parr J; Kazin EA; McLaren A; Toler K; Deirmengian C
    Cureus; 2023 Dec; 15(12):e51036. PubMed ID: 38143730
    [TBL] [Abstract][Full Text] [Related]  

  • 29. An Unsupervised Machine Learning Approach to Evaluating the Association of Symptom Clusters With Adverse Outcomes Among Older Adults With Advanced Cancer: A Secondary Analysis of a Randomized Clinical Trial.
    Xu H; Mohamed M; Flannery M; Peppone L; Ramsdale E; Loh KP; Wells M; Jamieson L; Vogel VG; Hall BA; Mustian K; Mohile S; Culakova E
    JAMA Netw Open; 2023 Mar; 6(3):e234198. PubMed ID: 36947036
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Machine Learning Consensus Clustering Approach for Hospitalized Patients with Phosphate Derangements.
    Thongprayoon C; Dumancas CY; Nissaisorakarn V; Keddis MT; Kattah AG; Pattharanitima P; Petnak T; Vallabhajosyula S; Garovic VD; Mao MA; Dillon JJ; Erickson SB; Cheungpasitporn W
    J Clin Med; 2021 Sep; 10(19):. PubMed ID: 34640457
    [TBL] [Abstract][Full Text] [Related]  

  • 31. An unsupervised machine learning method for discovering patient clusters based on genetic signatures.
    Lopez C; Tucker S; Salameh T; Tucker C
    J Biomed Inform; 2018 Sep; 85():30-39. PubMed ID: 30016722
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Identification of clinical phenotypes associated with poor prognosis in patients with nonalcoholic fatty liver disease via unsupervised machine learning.
    Ito T; Morooka H; Takahashi H; Fujii H; Iwaki M; Hayashi H; Toyoda H; Oeda S; Hyogo H; Kawanaka M; Morishita A; Munekage K; Kawata K; Tsutsumi T; Sawada K; Maeshiro T; Tobita H; Yoshida Y; Naito M; Araki A; Arakaki S; Kawaguchi T; Noritake H; Ono M; Masaki T; Yasuda S; Tomita E; Yoneda M; Tokushige A; Ishigami M; Kamada Y; Ueda S; Aishima S; Sumida Y; Nakajima A; Okanoue T;
    J Gastroenterol Hepatol; 2023 Oct; 38(10):1832-1839. PubMed ID: 37596843
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Distinct Phenotypes of Non-Citizen Kidney Transplant Recipients in the United States by Machine Learning Consensus Clustering.
    Thongprayoon C; Vaitla P; Jadlowiec CC; Leeaphorn N; Mao SA; Mao MA; Qureshi F; Kaewput W; Qureshi F; Tangpanithandee S; Krisanapan P; Pattharanitima P; Acharya PC; Nissaisorakarn P; Cooper M; Cheungpasitporn W
    Medicines (Basel); 2023 Mar; 10(4):. PubMed ID: 37103780
    [TBL] [Abstract][Full Text] [Related]  

  • 34. An Unsupervised Machine Learning Clustering and Prediction of Differential Clinical Phenotypes of COVID-19 Patients Based on Blood Tests-A Hong Kong Population Study.
    Lau KY; Ng KS; Kwok KW; Tsia KK; Sin CF; Lam CW; Vardhanabhuti V
    Front Med (Lausanne); 2021; 8():764934. PubMed ID: 35284429
    [TBL] [Abstract][Full Text] [Related]  

  • 35. New cancer cachexia staging system for use in clinical practice.
    Wiegert EVM; de Oliveira LC; Calixto-Lima L; Chaves GV; Silva Lopes MS; Peres WAF
    Nutrition; 2021 Oct; 90():111271. PubMed ID: 34004417
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Distinct Phenotypes of Kidney Transplant Recipients in the United States with Limited Functional Status as Identified through Machine Learning Consensus Clustering.
    Thongprayoon C; Jadlowiec CC; Kaewput W; Vaitla P; Mao SA; Mao MA; Leeaphorn N; Qureshi F; Pattharanitima P; Qureshi F; Acharya PC; Nissaisorakarn P; Cooper M; Cheungpasitporn W
    J Pers Med; 2022 May; 12(6):. PubMed ID: 35743647
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Clinical utility of the modified Glasgow Prognostic Score to classify cachexia in patients with advanced cancer in palliative care.
    Silva GAD; Wiegert EVM; Calixto-Lima L; Oliveira LC
    Clin Nutr; 2020 May; 39(5):1587-1592. PubMed ID: 31377013
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Clinical Phenotypes of Dual Kidney Transplant Recipients in the United States as Identified through Machine Learning Consensus Clustering.
    Tangpanithandee S; Thongprayoon C; Jadlowiec CC; Mao SA; Mao MA; Vaitla P; Leeaphorn N; Kaewput W; Pattharanitima P; Krisanapan P; Nissaisorakarn P; Cooper M; Cheungpasitporn W
    Medicina (Kaunas); 2022 Dec; 58(12):. PubMed ID: 36557033
    [No Abstract]   [Full Text] [Related]  

  • 39. Cachexia among US cancer patients.
    Arthur ST; Van Doren BA; Roy D; Noone JM; Zacherle E; Blanchette CM
    J Med Econ; 2016 Sep; 19(9):874-80. PubMed ID: 27100202
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Identification of PsA phenotypes with machine learning analytics using data from two phase III clinical trials of guselkumab in a bio-naïve population of patients with PsA.
    Richette P; Vis M; Ohrndorf S; Tillett W; Ramírez J; Neuhold M; van Speybroeck M; Theander E; Noel W; Zimmermann M; Shawi M; Kollmeier A; Zabotti A
    RMD Open; 2023 Mar; 9(1):. PubMed ID: 37001920
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.