These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 38154437)

  • 1. Development of in situ high resolution NMR: Proof-of-principle for a new (spinning) cylindrical mini-pellet approach applied to a Lithium ion battery.
    Mohammad I; Cambaz MA; Samoson A; Fichtner M; Witter R
    Solid State Nucl Magn Reson; 2024 Feb; 129():101914. PubMed ID: 38154437
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In Situ Magic-Angle Spinning
    Freytag AI; Pauric AD; Krachkovskiy SA; Goward GR
    J Am Chem Soc; 2019 Sep; 141(35):13758-13761. PubMed ID: 31429559
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In situ solid-state NMR spectroscopy of electrochemical cells: batteries, supercapacitors, and fuel cells.
    Blanc F; Leskes M; Grey CP
    Acc Chem Res; 2013 Sep; 46(9):1952-63. PubMed ID: 24041242
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Magic-angle-spinning-induced local ordering in polymer electrolytes and its effects on solid-state diffusion and relaxation NMR measurements.
    Messinger RJ; Vu Huynh T; Bouchet R; Sarou-Kanian V; Deschamps M
    Magn Reson Chem; 2020 Nov; 58(11):1118-1129. PubMed ID: 32324938
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Proton-Based Ultrafast Magic Angle Spinning Solid-State NMR Spectroscopy.
    Zhang R; Mroue KH; Ramamoorthy A
    Acc Chem Res; 2017 Apr; 50(4):1105-1113. PubMed ID: 28353338
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Solid-State NMR and MRI Spectroscopy for Li/Na Batteries: Materials, Interface, and In Situ Characterization.
    Liu X; Liang Z; Xiang Y; Lin M; Li Q; Liu Z; Zhong G; Fu R; Yang Y
    Adv Mater; 2021 Dec; 33(50):e2005878. PubMed ID: 33788341
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Operando NMR characterization of a metal-air battery using a double-compartment cell design.
    Gauthier M; Nguyen MH; Blondeau L; Foy E; Wong A
    Solid State Nucl Magn Reson; 2021 Jun; 113():101731. PubMed ID: 33823328
    [TBL] [Abstract][Full Text] [Related]  

  • 8. X-ray absorption near-edge structure and nuclear magnetic resonance study of the lithium-sulfur battery and its components.
    Patel MU; Arčon I; Aquilanti G; Stievano L; Mali G; Dominko R
    Chemphyschem; 2014 Apr; 15(5):894-904. PubMed ID: 24497200
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced efficiency of solid-state NMR investigations of energy materials using an external automatic tuning/matching (eATM) robot.
    Pecher O; Halat DM; Lee J; Liu Z; Griffith KJ; Braun M; Grey CP
    J Magn Reson; 2017 Feb; 275():127-136. PubMed ID: 28064071
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrode-Electrolyte Interfaces in Lithium-Sulfur Batteries with Liquid or Inorganic Solid Electrolytes.
    Yu X; Manthiram A
    Acc Chem Res; 2017 Nov; 50(11):2653-2660. PubMed ID: 29112389
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sensitivity and resolution enhanced solid-state NMR for paramagnetic systems and biomolecules under very fast magic angle spinning.
    Parthasarathy S; Nishiyama Y; Ishii Y
    Acc Chem Res; 2013 Sep; 46(9):2127-35. PubMed ID: 23889329
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Long-run in operando NMR to investigate the evolution and degradation of battery cells.
    Kayser SA; Mester A; Mertens A; Jakes P; Eichel RA; Granwehr J
    Phys Chem Chem Phys; 2018 May; 20(20):13765-13776. PubMed ID: 29740646
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Paramagnetic electrodes and bulk magnetic susceptibility effects in the in situ NMR studies of batteries: application to Li1.08Mn1.92O4 spinels.
    Zhou L; Leskes M; Ilott AJ; Trease NM; Grey CP
    J Magn Reson; 2013 Sep; 234():44-57. PubMed ID: 23838525
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Polymer Electrolytes for Lithium-Ion Batteries Studied by NMR Techniques.
    Volkov VI; Yarmolenko OV; Chernyak AV; Slesarenko NA; Avilova IA; Baymuratova GR; Yudina AV
    Membranes (Basel); 2022 Apr; 12(4):. PubMed ID: 35448386
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Re-entrant lithium local environments and defect driven electrochemistry of Li- and Mn-rich Li-ion battery cathodes.
    Dogan F; Long BR; Croy JR; Gallagher KG; Iddir H; Russell JT; Balasubramanian M; Key B
    J Am Chem Soc; 2015 Feb; 137(6):2328-35. PubMed ID: 25634302
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Magic angle spinning NMR with metallized rotors as cylindrical microwave resonators.
    Scott FJ; Sesti EL; Choi EJ; Laut AJ; Sirigiri JR; Barnes AB
    Magn Reson Chem; 2018 Sep; 56(9):831-835. PubMed ID: 29672916
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High resolution solid-state NMR on the desktop.
    Xu K; Aldudak F; Pecher O; Braun M; Neuberger A; Foysi H; Schmedt Auf der Günne J
    Solid State Nucl Magn Reson; 2023 Aug; 126():101884. PubMed ID: 37419044
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In Situ Multinuclear Magic-Angle Spinning NMR: Monitoring Crystallization of Molecular Sieve AlPO
    Alahakoon SH; Willans MJ; Huang Y
    JACS Au; 2023 Jun; 3(6):1670-1683. PubMed ID: 37388699
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nondestructive high-resolution solid-state NMR of rotating thin films at the magic-angle.
    Inukai M; Noda Y; Takeda K
    J Magn Reson; 2011 Dec; 213(1):192-5. PubMed ID: 21958755
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural characterization of the lithium silicides Li15Si4, Li13Si4, and Li7Si3 using solid state NMR.
    Dupke S; Langer T; Pöttgen R; Winter M; Passerini S; Eckert H
    Phys Chem Chem Phys; 2012 May; 14(18):6496-508. PubMed ID: 22456851
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.