These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 38154639)

  • 61. Research on freshwater water quality criteria, sediment quality criteria and ecological risk assessment of triclosan in China.
    Liu X; Tu M; Wang S; Wang Y; Wang J; Hou Y; Zheng X; Yan Z
    Sci Total Environ; 2022 Apr; 816():151616. PubMed ID: 34774937
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Validation of a biotic ligand model on site-specific copper toxicity to Daphnia magna in the Yeongsan River, Korea.
    Park J; Ra JS; Rho H; Cho J; Kim SD
    Ecotoxicol Environ Saf; 2018 Mar; 149():108-115. PubMed ID: 29154134
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Chronic Toxicity of Iron to Aquatic Organisms under Variable pH, Hardness, and Dissolved Organic Carbon Conditions.
    Cardwell AS; Rodriguez PH; Stubblefield WA; DeForest DK; Adams WJ
    Environ Toxicol Chem; 2023 Jun; 42(6):1371-1385. PubMed ID: 37014181
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Predicting Copper Speciation in Estuarine Waters-Is Dissolved Organic Carbon a Good Proxy for the Presence of Organic Ligands?
    Pearson HB; Comber SD; Braungardt C; Worsfold PJ
    Environ Sci Technol; 2017 Feb; 51(4):2206-2216. PubMed ID: 28098987
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Mesocosm validation of the marine No Effect Concentration of dissolved copper derived from a species sensitivity distribution.
    Foekema EM; Kaag NH; Kramer KJ; Long K
    Sci Total Environ; 2015 Jul; 521-522():173-82. PubMed ID: 25829294
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Acute copper toxicity in the euryhaline copepod Acartia tonsa: implications for the development of an estuarine and marine biotic ligand model.
    Pinho GL; Bianchini A
    Environ Toxicol Chem; 2010 Aug; 29(8):1834-40. PubMed ID: 20821639
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Photolysis of 2,4,6-trinitrotoluene in seawater and estuary water: Impact of pH, temperature, salinity, and dissolved organic matter.
    Luning Prak DJ; Breuer JE; Rios EA; Jedlicka EE; O'Sullivan DW
    Mar Pollut Bull; 2017 Jan; 114(2):977-986. PubMed ID: 27871626
    [TBL] [Abstract][Full Text] [Related]  

  • 68. A comparison of the copper sensitivity of six invertebrate species in ambient salt water of varying dissolved organic matter concentrations.
    Arnold WR; Cotsifas JS; Ogle RS; DePalma SGS; Smith DS
    Environ Toxicol Chem; 2010 Feb; 29(2):311-319. PubMed ID: 20821449
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Influence of pH, hardness, dissolved organic carbon concentration, and dissolved organic matter source on the acute toxicity of copper to Daphnia magna in soft waters: implications for the biotic ligand model.
    Ryan AC; Tomasso JR; Klaine SJ
    Environ Toxicol Chem; 2009 Aug; 28(8):1663-70. PubMed ID: 19265455
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Toxicity of copper nanoparticles to Daphnia magna under different exposure conditions.
    Xiao Y; Peijnenburg WJ; Chen G; Vijver MG
    Sci Total Environ; 2016 Sep; 563-564():81-8. PubMed ID: 27135569
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Potential of the Biotic Ligand Model (BLM) to Predict Copper Toxicity in the White-Water of the Solimões-Amazon River.
    Pont GD; Domingos FX; Fernandes-de-Castilho M; Val AL
    Bull Environ Contam Toxicol; 2017 Jan; 98(1):27-32. PubMed ID: 27888328
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Influences of macroalga-derived dissolved organic carbon on the aquatic toxicity of copper and cadmium.
    Tsui MT; Wang WX; Wong MH
    Chemosphere; 2006 Dec; 65(10):1831-5. PubMed ID: 16709424
    [TBL] [Abstract][Full Text] [Related]  

  • 73. A review of the effects of multiple stressors on aquatic organisms and analysis of uncertainty factors for use in risk assessment.
    Heugens EH; Hendriks AJ; Dekker T; van Straalen NM; Admiraal W
    Crit Rev Toxicol; 2001 May; 31(3):247-84. PubMed ID: 11405441
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Humic substances-part 7: the biogeochemistry of dissolved organic carbon and its interactions with climate change.
    Porcal P; Koprivnjak JF; Molot LA; Dillon PJ
    Environ Sci Pollut Res Int; 2009 Sep; 16(6):714-26. PubMed ID: 19462191
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Development of a regression model to predict copper toxicity to Daphnia magna and site-specific copper criteria across multiple surface-water drainages in an arid landscape.
    Fulton BA; Meyer JS
    Environ Toxicol Chem; 2014 Aug; 33(8):1865-73. PubMed ID: 24796294
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Influence of water chemistry on the acute toxicity of copper and zinc to the cladoceran Ceriodaphnia cf dubia.
    Hyne RV; Pablo F; Julli M; Markich SJ
    Environ Toxicol Chem; 2005 Jul; 24(7):1667-75. PubMed ID: 16050583
    [TBL] [Abstract][Full Text] [Related]  

  • 77. The role of dissolved organic carbon concentration and composition on nickel toxicity to early life-stages of the blue mussel Mytilus edulis and purple sea urchin Strongylocentrotus purpuratus.
    Blewett TA; Dow EM; Wood CM; McGeer JC; Smith DS
    Ecotoxicol Environ Saf; 2018 Sep; 160():162-170. PubMed ID: 29804012
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Insights into the CuO nanoparticle ecotoxicity with suitable marine model species.
    Rotini A; Gallo A; Parlapiano I; Berducci MT; Boni R; Tosti E; Prato E; Maggi C; Cicero AM; Migliore L; Manfra L
    Ecotoxicol Environ Saf; 2018 Jan; 147():852-860. PubMed ID: 28968938
    [TBL] [Abstract][Full Text] [Related]  

  • 79. A Review of Water Quality Factors that Affect Nickel Bioavailability to Aquatic Organisms: Refinement of the Biotic Ligand Model for Nickel in Acute and Chronic Exposures.
    Santore RC; Croteau K; Ryan AC; Schlekat C; Middleton E; Garman E; Hoang T
    Environ Toxicol Chem; 2021 Aug; 40(8):2121-2134. PubMed ID: 33945644
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Influence of flow-through and renewal exposures on the toxicity of copper to rainbow trout.
    Welsh PG; Lipton J; Mebane CA; Marr JC
    Ecotoxicol Environ Saf; 2008 Feb; 69(2):199-208. PubMed ID: 17517436
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.