These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 38154640)

  • 41. Ecotoxicological characterization of biochars: role of feedstock and pyrolysis temperature.
    Domene X; Enders A; Hanley K; Lehmann J
    Sci Total Environ; 2015 Apr; 512-513():552-561. PubMed ID: 25647370
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Effect of pyrolysis temperature on the chemical oxidation stability of bamboo biochar.
    Chen D; Yu X; Song C; Pang X; Huang J; Li Y
    Bioresour Technol; 2016 Oct; 218():1303-6. PubMed ID: 27481469
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Influence of pyrolysis temperature on composted sewage sludge biochar priming effect in a loamy soil.
    Méndez A; Tarquis AM; Saa-Requejo A; Guerrero F; Gascó G
    Chemosphere; 2013 Oct; 93(4):668-76. PubMed ID: 23891257
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Trace metal elements mediated co-pyrolysis of biomass and bentonite for the synthesis of biochar with high stability.
    Yu J; Wu Z; An X; Tian F; Yu B
    Sci Total Environ; 2021 Jun; 774():145611. PubMed ID: 33607429
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Carbon stability and mitigation of fertilizer induced N
    Grutzmacher P; Puga AP; Bibar MPS; Coscione AR; Packer AP; de Andrade CA
    Sci Total Environ; 2018 Jun; 625():1459-1466. PubMed ID: 29996442
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Nitrogen enrichment potential of biochar in relation to pyrolysis temperature and feedstock quality.
    Jassal RS; Johnson MS; Molodovskaya M; Black TA; Jollymore A; Sveinson K
    J Environ Manage; 2015 Apr; 152():140-4. PubMed ID: 25621388
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Pyrolysis temperature dependent effects of biochar on shifting fluorescence spectrum characteristics of soil dissolved organic matter under warming.
    Huang S; Zhu X; Fang J; Zhang X; Zhang H; Zhang Z; Wu X; Zhu X
    Sci Total Environ; 2023 Sep; 892():164656. PubMed ID: 37279807
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Phosphorus-assisted biomass thermal conversion: reducing carbon loss and improving biochar stability.
    Zhao L; Cao X; Zheng W; Kan Y
    PLoS One; 2014; 9(12):e115373. PubMed ID: 25531111
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Field-scale fluorescence fingerprinting of biochar-borne dissolved organic carbon.
    Uchimiya M; Liu Z; Sistani K
    J Environ Manage; 2016 Mar; 169():184-90. PubMed ID: 26751812
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Life cycle assessment of greenhouse gas emissions for various feedstocks-based biochars as soil amendment.
    Xia F; Zhang Z; Zhang Q; Huang H; Zhao X
    Sci Total Environ; 2024 Feb; 911():168734. PubMed ID: 38007117
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Effect of Different Phosphates on Pyrolysis Temperature-Dependent Carbon Sequestration and Phosphorus Release Performance in Biochar.
    Bai T; Ma W; Li W; Jiang J; Chen J; Cao R; Yang W; Dong D; Liu T; Xu Y
    Molecules; 2023 May; 28(9):. PubMed ID: 37175360
    [TBL] [Abstract][Full Text] [Related]  

  • 52. [Research progress on biochar carbon sequestration technology].
    Jiang ZX; Zheng H; Li FM; Wang ZY
    Huan Jing Ke Xue; 2013 Aug; 34(8):3327-33. PubMed ID: 24191586
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Life-cycle assessment of pyrolysis processes for sustainable production of biochar from agro-residues.
    Zhu X; Labianca C; He M; Luo Z; Wu C; You S; Tsang DCW
    Bioresour Technol; 2022 Sep; 360():127601. PubMed ID: 35835419
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Effects of feedstock and inherent mineral components on oxidation resistance of biochars.
    Liu G; Pan X; Ma X; Xin S; Xin Y
    Sci Total Environ; 2020 Jul; 726():138672. PubMed ID: 32320864
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Comparison of pyrolysis process, various fractions and potential soil applications between sewage sludge-based biochars and lignocellulose-based biochars.
    Xing J; Xu G; Li G
    Ecotoxicol Environ Saf; 2021 Jan; 208():111756. PubMed ID: 33396079
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Carbon content determines the aggregation of biochar colloids from various feedstocks.
    Li Q; Zhang X; Mao M; Wang X; Shang J
    Sci Total Environ; 2023 Jul; 880():163313. PubMed ID: 37030377
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Effects of spent mushroom substrate-derived biochar on soil CO
    Deng B; Shi Y; Zhang L; Fang H; Gao Y; Luo L; Feng W; Hu X; Wan S; Huang W; Guo X; Siemann E
    Chemosphere; 2020 May; 246():125608. PubMed ID: 31884231
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Comparative analysis of pinewood, peanut shell, and bamboo biomass derived biochars produced via hydrothermal conversion and pyrolysis.
    Huff MD; Kumar S; Lee JW
    J Environ Manage; 2014 Dec; 146():303-308. PubMed ID: 25190598
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Soil lead immobilization by biochars in short-term laboratory incubation studies.
    Igalavithana AD; Kwon EE; Vithanage M; Rinklebe J; Moon DH; Meers E; Tsang DCW; Ok YS
    Environ Int; 2019 Jun; 127():190-198. PubMed ID: 30925262
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Pyrolysis biochar has negligible effects on soil greenhouse gas production, microbial communities, plant germination, and initial seedling growth.
    Meschewski E; Holm N; Sharma BK; Spokas K; Minalt N; Kelly JJ
    Chemosphere; 2019 Aug; 228():565-576. PubMed ID: 31055071
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.