These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 38154672)

  • 41. Response of compacted bentonite to hyperalkalinity and thermal history.
    Kale RC; Kapil B; Ravi K
    Sci Rep; 2021 Jul; 11(1):15483. PubMed ID: 34326444
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Analysis of copper corrosion in compacted bentonite clay as a function of clay density and growth conditions for sulfate-reducing bacteria.
    Pedersen K
    J Appl Microbiol; 2010 Mar; 108(3):1094-1104. PubMed ID: 20015208
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Modeling cation diffusion in compacted water-saturated sodium bentonite at low ionic strength.
    Bourg IC; Sposito G; Bourg AC
    Environ Sci Technol; 2007 Dec; 41(23):8118-22. PubMed ID: 18186346
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A worksheet-based tool to implement reactive transport models in COMSOL Multiphysics.
    López-Vizcaíno R; Yustres Á; Cabrera V; Navarro V
    Chemosphere; 2021 Mar; 266():129176. PubMed ID: 33316469
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Investigation on gas permeability of compacted GMZ bentonite with consideration of variations in liquid saturation, dry density and confining pressure.
    Xu L; Ye WM; Chen YG; Chen B; Cui YJ
    J Contam Hydrol; 2020 Mar; 230():103622. PubMed ID: 32044157
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Numerical modeling of coupled variably saturated fluid flow and reactive transport with fast and slow chemical reactions.
    Yeh GT; Siegel MD; Li MH
    J Contam Hydrol; 2001 Feb; 47(2-4):379-90. PubMed ID: 11288590
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Monitoring of bentonite pore water with a probe based on solid-state microsensors.
    Orozco J; Baldi A; Martín PL; Bratov A; Jiménez C
    Anal Chim Acta; 2006 Oct; 579(1):95-101. PubMed ID: 17723733
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Microbiology of barrier component analogues of a deep geological repository.
    Beaver RC; Engel K; Binns WJ; Neufeld JD
    Can J Microbiol; 2022 Feb; 68(2):73-90. PubMed ID: 34648720
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Radionuclide transport behavior in a generic geological radioactive waste repository.
    Bianchi M; Liu HH; Birkholzer JT
    Ground Water; 2015; 53(3):440-51. PubMed ID: 24571606
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Solute transport in crystalline rocks at Aspö--II: blind predictions, inverse modelling and lessons learnt from test STT1.
    Jakob A; Mazurek M; Heer W
    J Contam Hydrol; 2003 Mar; 61(1-4):175-90. PubMed ID: 12598103
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Laboratory determination of migration of Eu(III) in compacted bentonite-sand mixtures as buffer/backfill material for high-level waste disposal.
    Zhou L; Zhang H; Yan M; Chen H; Zhang M
    Appl Radiat Isot; 2013 Dec; 82():139-44. PubMed ID: 23994739
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Occurrence and identification of microorganisms in compacted clay-based buffer material designed for use in a nuclear fuel waste disposal vault.
    Stroes-Gascoyne S; Pedersen K; Haveman SA; Dekeyser K; Arlinger J; Daumas S; Ekendahl S; Hallbeck L; Hamon CJ; Jahromi N; Delaney TL
    Can J Microbiol; 1997 Dec; 43(12):1133-46. PubMed ID: 9476350
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Assessment of site conditions for disposal of low- and intermediate-level radioactive wastes: a case study in southern China.
    Yi S; Ma H; Zheng C; Zhu X; Wang H; Li X; Hu X; Qin J
    Sci Total Environ; 2012 Jan; 414():624-31. PubMed ID: 22119030
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Study of the contaminant transport into granite microfractures using nuclear ion beam techniques.
    Alonso U; Missana T; Patelli A; Rigato V; Rivas P
    J Contam Hydrol; 2003 Mar; 61(1-4):95-105. PubMed ID: 12598097
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The scientific base for the disposal of spent nuclear fuel.
    Persson L
    Health Phys; 1993 Apr; 64(4):417-9. PubMed ID: 8449725
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Adsorption characteristics of strontium by bentonite colloids acting on claystone of candidate high-level radioactive waste geological disposal sites.
    Zuo R; Xu Z; Wang X; Yang J; Du X; Du C; Cai W; Xu Y; Wu Z
    Environ Res; 2022 Oct; 213():113633. PubMed ID: 35700766
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Influence of real and synthetic municipal solid waste leachates on consolidation and shear strength behaviour of bentonites.
    Ray S; Mishra AK; Kalamdhad AS
    Environ Sci Pollut Res Int; 2021 Jun; 28(24):30975-30985. PubMed ID: 33594560
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Measuring microbial metabolism in atypical environments: Bentonite in used nuclear fuel storage.
    Stone W; Kroukamp O; Moes A; McKelvie J; Korber DR; Wolfaardt GM
    J Microbiol Methods; 2016 Jan; 120():79-90. PubMed ID: 26578245
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Siting Deep Boreholes for Disposal of Radioactive Waste: Consequences for Tight Coupling between Natural and Engineered Systems.
    Krall L; McCartin T; Macfarlane A
    Environ Sci Technol; 2020 Jan; 54(2):629-646. PubMed ID: 31904229
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Comparison of the amount of nuclides released from the spent fuel in contact with and without a compacted bentonite block.
    Kim SS; Choi JW; Kang CH; Cho WJ; Loida A; Müller N
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2006; 41(8):1749-57. PubMed ID: 16835124
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.