BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 38154692)

  • 1. Deep Learning Prediction Boosts Phosphoproteomics-Based Discoveries Through Improved Phosphopeptide Identification.
    Yi X; Wen B; Ji S; Saltzman AB; Jaehnig EJ; Lei JT; Gao Q; Zhang B
    Mol Cell Proteomics; 2024 Feb; 23(2):100707. PubMed ID: 38154692
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deep learning prediction boosts phosphoproteomics-based discoveries through improved phosphopeptide identification.
    Yi X; Wen B; Ji S; Saltzman A; Jaehnig EJ; Lei JT; Gao Q; Zhang B
    bioRxiv; 2023 Jan; ():. PubMed ID: 36711982
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deep-Learning-Derived Evaluation Metrics Enable Effective Benchmarking of Computational Tools for Phosphopeptide Identification.
    Jiang W; Wen B; Li K; Zeng WF; da Veiga Leprevost F; Moon J; Petyuk VA; Edwards NJ; Liu T; Nesvizhskii AI; Zhang B
    Mol Cell Proteomics; 2021; 20():100171. PubMed ID: 34737085
    [TBL] [Abstract][Full Text] [Related]  

  • 4. DeepFLR facilitates false localization rate control in phosphoproteomics.
    Zong Y; Wang Y; Yang Y; Zhao D; Wang X; Shen C; Qiao L
    Nat Commun; 2023 Apr; 14(1):2269. PubMed ID: 37080984
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A New Workflow for the Analysis of Phosphosite Occupancy in Paired Samples by Integration of Proteomics and Phosphoproteomics Data Sets.
    Wang Y; Tian Y; Liu X; Dong J; Wang L; Ye M
    J Proteome Res; 2020 Sep; 19(9):3807-3816. PubMed ID: 32786891
    [TBL] [Abstract][Full Text] [Related]  

  • 6. PhoPepMass: A database and search tool assisting human phosphorylation peptide identification from mass spectrometry data.
    Zhang M; Cui H; Chen L; Yu Y; Glocker MO; Xie L
    J Genet Genomics; 2018 Jul; 45(7):381-388. PubMed ID: 30055873
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A data-independent acquisition-based global phosphoproteomics system enables deep profiling.
    Kitata RB; Choong WK; Tsai CF; Lin PY; Chen BS; Chang YC; Nesvizhskii AI; Sung TY; Chen YJ
    Nat Commun; 2021 May; 12(1):2539. PubMed ID: 33953186
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Unambiguous Phosphosite Localization through the Combination of Trypsin and LysargiNase Mirror Spectra in a Large-Scale Phosphoproteome Study.
    Xu F; Yu L; Peng X; Zhang J; Li S; Liu S; Yin Y; An Z; Wang F; Fu Y; Xu P
    J Proteome Res; 2020 Jun; 19(6):2185-2194. PubMed ID: 32388983
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Parallel reaction monitoring on a Q Exactive mass spectrometer increases reproducibility of phosphopeptide detection in bacterial phosphoproteomics measurements.
    Taumer C; Griesbaum L; Kovacevic A; Soufi B; Nalpas NC; Macek B
    J Proteomics; 2018 Oct; 189():60-66. PubMed ID: 29605292
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-Throughput Characterization of Histidine Phosphorylation Sites Using UPAX and Tandem Mass Spectrometry.
    Hardman G; Eyers CE
    Methods Mol Biol; 2020; 2077():225-235. PubMed ID: 31707662
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phosphoproteomics with Activated Ion Electron Transfer Dissociation.
    Riley NM; Hebert AS; Dürnberger G; Stanek F; Mechtler K; Westphall MS; Coon JJ
    Anal Chem; 2017 Jun; 89(12):6367-6376. PubMed ID: 28383256
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fragment Mass Spectrum Prediction Facilitates Site Localization of Phosphorylation.
    Yang Y; Horvatovich P; Qiao L
    J Proteome Res; 2021 Jan; 20(1):634-644. PubMed ID: 32985198
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Multipathway Phosphopeptide Standard for Rapid Phosphoproteomics Assay Development.
    Searle BC; Chien A; Koller A; Hawke D; Herren AW; Kim Kim J; Lee KA; Leib RD; Nelson AJ; Patel P; Ren JM; Stemmer PM; Zhu Y; Neely BA; Patel B
    Mol Cell Proteomics; 2023 Oct; 22(10):100639. PubMed ID: 37657519
    [TBL] [Abstract][Full Text] [Related]  

  • 14. RUPE-phospho: Rapid Ultrasound-Assisted Peptide-Identification-Enhanced Phosphoproteomics Workflow for Microscale Samples.
    Huang Y; Shao X; Liu Y; Yan K; Ying W; He F; Wang D
    Anal Chem; 2023 Dec; 95(49):17974-17980. PubMed ID: 38011496
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Accurate phosphorylation site localization using phospho-brackets.
    Xiao K; Shen Y; Li S; Tian Z
    Anal Chim Acta; 2017 Dec; 996():38-47. PubMed ID: 29137706
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Automated phosphopeptide identification using multiple MS/MS fragmentation modes.
    Vandenbogaert M; Hourdel V; Jardin-Mathé O; Bigeard J; Bonhomme L; Legros V; Hirt H; Schwikowski B; Pflieger D
    J Proteome Res; 2012 Dec; 11(12):5695-703. PubMed ID: 23094866
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Confident and sensitive phosphoproteomics using combinations of collision induced dissociation and electron transfer dissociation.
    Collins MO; Wright JC; Jones M; Rayner JC; Choudhary JS
    J Proteomics; 2014 May; 103(100):1-14. PubMed ID: 24657495
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comprehensive Evaluation of Different TiO
    Li J; Wang J; Yan Y; Li N; Qing X; Tuerxun A; Guo X; Chen X; Yang F
    Cells; 2022 Jun; 11(13):. PubMed ID: 35805136
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rapid Shotgun Phosphoproteomics Analysis.
    Carrera M; Cañas B; Lopez-Ferrer D
    Methods Mol Biol; 2021; 2259():259-268. PubMed ID: 33687721
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Capillary Zone Electrophoresis-Tandem Mass Spectrometry for Large-Scale Phosphoproteomics with the Production of over 11,000 Phosphopeptides from the Colon Carcinoma HCT116 Cell Line.
    Chen D; Ludwig KR; Krokhin OV; Spicer V; Yang Z; Shen X; Hummon AB; Sun L
    Anal Chem; 2019 Feb; 91(3):2201-2208. PubMed ID: 30624053
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.