BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

76 related articles for article (PubMed ID: 3815542)

  • 1. Quinacrine-induced changes in mitotic PtK1 spindle microtubule organization.
    Armstrong L; Snyder JA
    Cell Motil Cytoskeleton; 1987; 7(1):10-9. PubMed ID: 3815542
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Selective reduction of anaphase B in quinacrine-treated PtK1 cells.
    Armstrong L; Snyder JA
    Cell Motil Cytoskeleton; 1989; 14(2):220-9. PubMed ID: 2611891
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of non-kinetochore microtubules in spindle elongation in mitotic PtK1 cells.
    Snyder JA; Golub RJ; Berg SP
    Eur J Cell Biol; 1986 Jan; 39(2):373-9. PubMed ID: 3956515
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cytochalasin J affects chromosome congression and spindle microtubule organization in PtK1 cells.
    Snyder JA; Cohen L
    Cell Motil Cytoskeleton; 1995; 32(4):245-57. PubMed ID: 8608604
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analysis of spindle microtubule organization in untreated and taxol-treated PtK1 cells.
    Snyder JA; Mullins JM
    Cell Biol Int; 1993 Dec; 17(12):1075-84. PubMed ID: 7906984
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cytochalasin J treatment significantly alters mitotic spindle microtubule organization and kinetochore structure in PtK1 cells.
    Wrench GA; Snyder JA
    Cell Motil Cytoskeleton; 1997; 36(2):112-24. PubMed ID: 9015200
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of metabolic inhibitors on sucrose-induced metaphase spindle elongation and spindle recovery.
    Snyder JA
    Cell Motil Cytoskeleton; 1988; 11(4):291-302. PubMed ID: 3219733
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural implications of kinetochore function in sucrose-treated PtK1 cells.
    Pover NK; Golub RJ; McLelland SL; Snyder JA
    Eur J Cell Biol; 1986 Jan; 39(2):366-72. PubMed ID: 3956514
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microtubule dynamics in the chromosomal spindle fiber: analysis by fluorescence and high-resolution polarization microscopy.
    Cassimeris L; Inoué S; Salmon ED
    Cell Motil Cytoskeleton; 1988; 10(1-2):185-96. PubMed ID: 3180243
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Immunofluorescence analysis of sucrose-induced changes in spindle morphology.
    Mullins JM; Wolf KM; Snyder JA
    Eur J Cell Biol; 1986 Jan; 39(2):333-40. PubMed ID: 3514219
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Ultrastructure of the mitotic apparatus of metaphase cells in a pig embryo kidney tissue culture after stopping the action of 2-mercaptoethanol].
    Bystrevskaia VB; Onishchenko GE; Chentsov IuS
    Tsitologiia; 1984 Oct; 26(10):1095-102. PubMed ID: 6393469
    [TBL] [Abstract][Full Text] [Related]  

  • 12. UV-microbeam irradiations of the mitotic spindle: spindle forces and structural analysis of lesions.
    Snyder JA; Armstrong L; Stonington OG; Spurck TP; Pickett-Heaps JD
    Eur J Cell Biol; 1991 Jun; 55(1):122-32. PubMed ID: 1915410
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cytoskeletal organization of rat oocytes during metaphase II arrest and following abortive activation: a study by confocal laser scanning microscopy.
    Zernicka-Goetz M; Kubiak JZ; Antony C; Maro B
    Mol Reprod Dev; 1993 Jun; 35(2):165-75. PubMed ID: 8100426
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamics of organelles in the mitotic spindles of living cells: membrane and microtubule interactions.
    Waterman-Storer CM; Sanger JW; Sanger JM
    Cell Motil Cytoskeleton; 1993; 26(1):19-39. PubMed ID: 8106173
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of microinjected calcium-calmodulin on mitosis in PtK2 cells.
    Keith CH
    Cell Motil Cytoskeleton; 1987; 7(1):1-9. PubMed ID: 3545503
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sucrose-induced spindle elongation in mitotic PtK-1 cells.
    Snyder JA; Golub RJ; Berg SP
    Eur J Cell Biol; 1984 Sep; 35(1):62-9. PubMed ID: 6489361
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Combretastatin CA-4 and combretastatin derivative induce mitotic catastrophe dependent on spindle checkpoint and caspase-3 activation in non-small cell lung cancer cells.
    Vitale I; Antoccia A; Cenciarelli C; Crateri P; Meschini S; Arancia G; Pisano C; Tanzarella C
    Apoptosis; 2007 Jan; 12(1):155-66. PubMed ID: 17143747
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Okadaic acid induces spindle lengthening and disrupts the interaction of microtubules with the kinetochores in metaphase II-arrested mouse oocytes.
    de Pennart H; Verlhac MH; Cibert C; Santa Maria A; Maro B
    Dev Biol; 1993 May; 157(1):170-81. PubMed ID: 8387033
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mammalian CLASPs are required for mitotic spindle organization and kinetochore alignment.
    Mimori-Kiyosue Y; Grigoriev I; Sasaki H; Matsui C; Akhmanova A; Tsukita S; Vorobjev I
    Genes Cells; 2006 Aug; 11(8):845-57. PubMed ID: 16866869
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Elongation of centriolar microtubule triplets contributes to the formation of the mitotic spindle in gamma-tubulin-depleted cells.
    Raynaud-Messina B; Mazzolini L; Moisand A; Cirinesi AM; Wright M
    J Cell Sci; 2004 Nov; 117(Pt 23):5497-507. PubMed ID: 15479719
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.