These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 38155510)

  • 1. Architecting the Microenvironment Skeleton of Active Materials in High-Capacity Electrodes by Self-Assembled Nano-Building Blocks.
    Zhu Z; Wu D; Feng L; He X; Hu T; Ye A; Fu X; Yang W; Wang Y
    Small; 2024 Jun; 20(23):e2307086. PubMed ID: 38155510
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-Loading Lithium-Sulfur Batteries with Solvent-Free Dry-Electrode Processing.
    Sul H; Lee D; Manthiram A
    Small; 2024 Mar; ():e2400728. PubMed ID: 38433393
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-Area-Capacity Cathode by Ultralong Carbon Nanotubes for Secondary Binder-Assisted Dry Coating Technology.
    Wang J; Shao D; Fan Z; Xu C; Dou H; Xu M; Ding B; Zhang X
    ACS Appl Mater Interfaces; 2024 May; 16(20):26209-26216. PubMed ID: 38733341
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-Performance Lithium-Sulfur Batteries with a Self-Assembled Multiwall Carbon Nanotube Interlayer and a Robust Electrode-Electrolyte Interface.
    Kim HM; Hwang JY; Manthiram A; Sun YK
    ACS Appl Mater Interfaces; 2016 Jan; 8(1):983-7. PubMed ID: 26686268
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Scalable Dry-Pressed Electrodes Based on Holey Graphene.
    Lin Y; Plaza-Rivera CO; Hu L; Connell JW
    Acc Chem Res; 2022 Oct; 55(20):3020-3031. PubMed ID: 36173244
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Toward Practical High-Energy Batteries: A Modular-Assembled Oval-Like Carbon Microstructure for Thick Sulfur Electrodes.
    Ye Y; Wu F; Liu Y; Zhao T; Qian J; Xing Y; Li W; Huang J; Li L; Huang Q; Bai X; Chen R
    Adv Mater; 2017 Dec; 29(48):. PubMed ID: 28429541
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sulfur Vapor-Infiltrated 3D Carbon Nanotube Foam for Binder-Free High Areal Capacity Lithium-Sulfur Battery Composite Cathodes.
    Li M; Carter R; Douglas A; Oakes L; Pint CL
    ACS Nano; 2017 May; 11(5):4877-4884. PubMed ID: 28452494
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Material and Structural Design of Novel Binder Systems for High-Energy, High-Power Lithium-Ion Batteries.
    Shi Y; Zhou X; Yu G
    Acc Chem Res; 2017 Nov; 50(11):2642-2652. PubMed ID: 28981258
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrophoretic Deposition for Lithium-Ion Battery Electrode Manufacture.
    Lalau CC; Low CTJ
    Batter Supercaps; 2019 Jun; 2(6):551-559. PubMed ID: 31894203
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mussel and Cobweb Inspired High Areal Capacity SPAN Electrode.
    Zuo W; Guo Y; Zhang C; Zhang L; Zhang S
    Small; 2024 Jun; 20(23):e2309126. PubMed ID: 38148313
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Novel Strategy for the Formulation of High-Energy-Density Cathodes via Porous Carbon for Li-S Batteries.
    Kim DS; Woo SG; Kang CJ; Lee JH; Lee JN; Yu JS; Kim YJ
    ChemSusChem; 2023 May; 16(10):e202202009. PubMed ID: 36577695
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-Performance Flexible Sulfur Cathodes with Robust Electrode Skeletons Built by a Hierarchical Self-Assembling Slurry.
    Zhang Z; Mo J; Yu P; Feng L; Wang Y; Lu Y; Yang W
    Adv Sci (Weinh); 2022 Sep; 9(26):e2201881. PubMed ID: 35853244
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sustainable Protein-Based Binder for Lithium-Sulfur Cathodes Processed by a Solvent-Free Dry-Coating Method.
    Schmidt F; Kirchhoff S; Jägle K; De A; Ehrling S; Härtel P; Dörfler S; Abendroth T; Schumm B; Althues H; Kaskel S
    ChemSusChem; 2022 Nov; 15(22):e202201320. PubMed ID: 36169208
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Solvent-Free Fabrication of Thick Electrodes in Thermoplastic Binders for High Energy Density Lithium-Ion Batteries.
    Kim HM; Yoo BI; Yi JW; Choi MJ; Yoo JK
    Nanomaterials (Basel); 2022 Sep; 12(19):. PubMed ID: 36234448
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Solvent-Free Manufacturing of Electrodes for Lithium-ion Batteries.
    Ludwig B; Zheng Z; Shou W; Wang Y; Pan H
    Sci Rep; 2016 Mar; 6():23150. PubMed ID: 26984488
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Practical aspects of electrophoretic deposition to produce commercially viable supercapacitor energy storage electrodes.
    Chakrabarti BK; John Low CT
    RSC Adv; 2021 Jun; 11(34):20641-20650. PubMed ID: 35479333
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Strengthening the Electrodes for Li-Ion Batteries with a Porous Adhesive Interlayer through Dry-Spraying Manufacturing.
    Liu J; Ludwig B; Liu Y; Pan H; Wang Y
    ACS Appl Mater Interfaces; 2019 Jul; 11(28):25081-25089. PubMed ID: 31149798
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Robust, Water-Based, Functional Binder Framework for High-Energy Lithium-Sulfur Batteries.
    Lacey MJ; Österlund V; Bergfelt A; Jeschull F; Bowden T; Brandell D
    ChemSusChem; 2017 Jul; 10(13):2758-2766. PubMed ID: 28544635
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biomimetic Ant-Nest Electrode Structures for High Sulfur Ratio Lithium-Sulfur Batteries.
    Ai G; Dai Y; Mao W; Zhao H; Fu Y; Song X; En Y; Battaglia VS; Srinivasan V; Liu G
    Nano Lett; 2016 Sep; 16(9):5365-72. PubMed ID: 27501313
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Construction of SnS
    Liu H; Li R; Yang T; Wang J
    Nanotechnology; 2024 Mar; 35(21):. PubMed ID: 38377620
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.