BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 38155561)

  • 1. Creating Remarkably Moisture- and Air-Stable Macromolecular Lewis Acid by Integrating Borane within the Polymer Chain: A Highly Active Catalyst for Homo(co)polymerization of Epoxides.
    Gu Y; Kou X; Wang X; Li Z
    Angew Chem Int Ed Engl; 2024 Feb; 63(7):e202318645. PubMed ID: 38155561
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mesoionic N-Heterocyclic Olefins as Initiators for the Lewis Pair Polymerization of Epoxides.
    Haug I; Reitz J; Ziane C; Buchmeiser MR; Hansmann MM; Naumann S
    Macromol Rapid Commun; 2024 Mar; ():e2300716. PubMed ID: 38497903
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Systematic Study of Nonionic Di- and Multiborane Catalysts for the Oligomerization and Polymerization of Epoxides.
    Haug I; Eberhardt M; Krappe U; Naumann S
    Chemistry; 2024 May; ():e202401268. PubMed ID: 38785225
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synergic Heterodinuclear Catalysts for the Ring-Opening Copolymerization (ROCOP) of Epoxides, Carbon Dioxide, and Anhydrides.
    Diment WT; Lindeboom W; Fiorentini F; Deacy AC; Williams CK
    Acc Chem Res; 2022 Aug; 55(15):1997-2010. PubMed ID: 35863044
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ring-Opening Polymerization of 1,3-Benzoxazines via Borane Catalyst.
    Arslan M; Kiskan B; Yagci Y
    Polymers (Basel); 2018 Feb; 10(3):. PubMed ID: 30966274
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modular Organoboron Catalysts Enable Transformations with Unprecedented Reactivity.
    Yang GW; Zhang YY; Wu GP
    Acc Chem Res; 2021 Dec; 54(23):4434-4448. PubMed ID: 34806374
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lewis pair polymerization by classical and frustrated Lewis pairs: acid, base and monomer scope and polymerization mechanism.
    Zhang Y; Miyake GM; John MG; Falivene L; Caporaso L; Cavallo L; Chen EY
    Dalton Trans; 2012 Aug; 41(30):9119-34. PubMed ID: 22614678
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Borane catalyzed polymerization and depolymerization reactions controlled by Lewis acidic strength.
    Andrea KA; Wheeler MD; Kerton FM
    Chem Commun (Camb); 2021 Jul; 57(59):7320-7322. PubMed ID: 34250525
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metal-Free Alternating Copolymerization of CO2 with Epoxides: Fulfilling "Green" Synthesis and Activity.
    Zhang D; Boopathi SK; Hadjichristidis N; Gnanou Y; Feng X
    J Am Chem Soc; 2016 Sep; 138(35):11117-20. PubMed ID: 27529725
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Insights into the Distinct Behaviors between Bifunctional and Binary Organoborane Catalysts through Terpolymerization of Epoxide, CO
    Xie R; Wang Y; Li S; Li B; Xu J; Liu J; He Y; Yang GW; Wu GP
    Angew Chem Int Ed Engl; 2024 Jul; 63(27):e202404207. PubMed ID: 38647637
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanistic Aspects of a Highly Active Dinuclear Zinc Catalyst for the Co-polymerization of Epoxides and CO2.
    Kissling S; Altenbuchner PT; Lehenmeier MW; Herdtweck E; Deglmann P; Seemann UB; Rieger B
    Chemistry; 2015 May; 21(22):8148-57. PubMed ID: 25900151
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanistic studies of the dehydrocoupling and dehydropolymerization of amine-boranes using a [Rh(Xantphos)]⁺ catalyst.
    Johnson HC; Leitao EM; Whittell GR; Manners I; Lloyd-Jones GC; Weller AS
    J Am Chem Soc; 2014 Jun; 136(25):9078-93. PubMed ID: 24844130
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lewis Pair Polymerization of Epoxides via Zwitterionic Species as a Route to High-Molar-Mass Polyethers.
    Walther P; Krauß A; Naumann S
    Angew Chem Int Ed Engl; 2019 Jul; 58(31):10737-10741. PubMed ID: 31099454
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Al(III)/K(I) Heterodinuclear Polymerization Catalysts Showing Fast Rates and High Selectivity for Polyester Polyols.
    Shellard EJK; Diment WT; Resendiz-Lara DA; Fiorentini F; Gregory GL; Williams CK
    ACS Catal; 2024 Feb; 14(3):1363-1374. PubMed ID: 38327648
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Frustrated Lewis Pairs Catalyzed Asymmetric Metal-Free Hydrogenations and Hydrosilylations.
    Meng W; Feng X; Du H
    Acc Chem Res; 2018 Jan; 51(1):191-201. PubMed ID: 29243918
    [TBL] [Abstract][Full Text] [Related]  

  • 17. ROMP-Boranes as Moisture-Tolerant and Recyclable Lewis Acid Organocatalysts.
    Vidal F; McQuade J; Lalancette R; Jäkle F
    J Am Chem Soc; 2020 Aug; 142(34):14427-14431. PubMed ID: 32787237
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Highly Efficient One-Pot Synthesis of COS-Based Block Copolymers by Using Organic Lewis Pairs.
    Yang JL; Cao XH; Zhang CJ; Wu HL; Zhang XH
    Molecules; 2018 Jan; 23(2):. PubMed ID: 29385077
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Preparation and Thermal Properties of Polycarbonates/esters Catalyzed by Using Dinuclear Salph-Al from Ring-Opening Polymerization of Epoxide Monomers.
    Zhou Y; Duan R; Li X; Pang X; Wang X; Chen X
    Chem Asian J; 2017 Dec; 12(24):3135-3140. PubMed ID: 28990724
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CO2 copolymers from epoxides: catalyst activity, product selectivity, and stereochemistry control.
    Lu XB; Ren WM; Wu GP
    Acc Chem Res; 2012 Oct; 45(10):1721-35. PubMed ID: 22857013
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.