These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
151 related articles for article (PubMed ID: 38155915)
21. A multilayer multimodal detection and prediction model based on explainable artificial intelligence for Alzheimer's disease. El-Sappagh S; Alonso JM; Islam SMR; Sultan AM; Kwak KS Sci Rep; 2021 Jan; 11(1):2660. PubMed ID: 33514817 [TBL] [Abstract][Full Text] [Related]
22. Validity and Cultural Generalisability of a 5-Minute AI-Based, Computerised Cognitive Assessment in Mild Cognitive Impairment and Alzheimer's Dementia. Kalafatis C; Modarres MH; Apostolou P; Marefat H; Khanbagi M; Karimi H; Vahabi Z; Aarsland D; Khaligh-Razavi SM Front Psychiatry; 2021; 12():706695. PubMed ID: 34366938 [No Abstract] [Full Text] [Related]
23. Using Digital Speech Assessments to Detect Early Signs of Cognitive Impairment. Robin J; Xu M; Kaufman LD; Simpson W Front Digit Health; 2021; 3():749758. PubMed ID: 34778869 [TBL] [Abstract][Full Text] [Related]
24. Comparing Pre-trained and Feature-Based Models for Prediction of Alzheimer's Disease Based on Speech. Balagopalan A; Eyre B; Robin J; Rudzicz F; Novikova J Front Aging Neurosci; 2021; 13():635945. PubMed ID: 33986655 [No Abstract] [Full Text] [Related]
25. Electroencephalography-based classification of Alzheimer's disease spectrum during computer-based cognitive testing. Kim SK; Kim H; Kim SH; Kim JB; Kim L Sci Rep; 2024 Mar; 14(1):5252. PubMed ID: 38438453 [TBL] [Abstract][Full Text] [Related]
26. Unveiling the sound of the cognitive status: Machine Learning-based speech analysis in the Alzheimer's disease spectrum. García-Gutiérrez F; Alegret M; Marquié M; Muñoz N; Ortega G; Cano A; De Rojas I; García-González P; Olivé C; Puerta R; García-Sanchez A; Capdevila-Bayo M; Montrreal L; Pytel V; Rosende-Roca M; Zaldua C; Gabirondo P; Tárraga L; Ruiz A; Boada M; Valero S Alzheimers Res Ther; 2024 Feb; 16(1):26. PubMed ID: 38308366 [TBL] [Abstract][Full Text] [Related]
27. Conversion pattern and predictive factor of mild cognitive impairment in elderly Koreans. Shim SM; Song J; Kim JH; Jeon JP Arch Gerontol Geriatr; 2016; 64():146-50. PubMed ID: 26896864 [TBL] [Abstract][Full Text] [Related]
28. Storyteller in ADNI4: Application of an early Alzheimer's disease screening tool using brief, remote, and speech-based testing. Skirrow C; Meepegama U; Weston J; Miller MJ; Nosheny RL; Albala B; Weiner MW; Fristed E; Alzheimers Dement; 2024 Oct; 20(10):7248-7262. PubMed ID: 39234647 [TBL] [Abstract][Full Text] [Related]
29. Development of a machine learning model to predict mild cognitive impairment using natural language processing in the absence of screening. Penfold RB; Carrell DS; Cronkite DJ; Pabiniak C; Dodd T; Glass AM; Johnson E; Thompson E; Arrighi HM; Stang PE BMC Med Inform Decis Mak; 2022 May; 22(1):129. PubMed ID: 35549702 [TBL] [Abstract][Full Text] [Related]
30. Detection of Mild Cognitive Impairment Through Natural Language and Touchscreen Typing Processing. Ntracha A; Iakovakis D; Hadjidimitriou S; Charisis VS; Tsolaki M; Hadjileontiadis LJ Front Digit Health; 2020; 2():567158. PubMed ID: 34713039 [TBL] [Abstract][Full Text] [Related]
31. Computer-Assisted Speech Analysis in Mild Cognitive Impairment and Alzheimer's Disease: A Pilot Study from Shanghai, China. Qiao Y; Xie XY; Lin GZ; Zou Y; Chen SD; Ren RJ; Wang G J Alzheimers Dis; 2020; 75(1):211-221. PubMed ID: 32250297 [TBL] [Abstract][Full Text] [Related]
32. Latent diffusion model-based MRI superresolution enhances mild cognitive impairment prognostication and Alzheimer's disease classification. Yoon D; Myong Y; Kim YG; Sim Y; Cho M; Oh BM; Kim S Neuroimage; 2024 Aug; 296():120663. PubMed ID: 38843963 [TBL] [Abstract][Full Text] [Related]
33. Olfactory Phenotypes Differentiate Cognitively Unimpaired Seniors from Alzheimer's Disease and Mild Cognitive Impairment: A Combined Machine Learning and Traditional Statistical Approach. Li J; Bur AM; Villwock MR; Shankar S; Palmer G; Sykes KJ; Villwock JA J Alzheimers Dis; 2021; 81(2):641-650. PubMed ID: 33843686 [TBL] [Abstract][Full Text] [Related]
34. Machine learning with multimodal neuroimaging data to classify stages of Alzheimer's disease: a systematic review and meta-analysis. Odusami M; Maskeliūnas R; Damaševičius R; Misra S Cogn Neurodyn; 2024 Jun; 18(3):775-794. PubMed ID: 38826669 [TBL] [Abstract][Full Text] [Related]
35. Predicting progression from subjective cognitive decline to mild cognitive impairment or dementia based on brain atrophy patterns. Lerch O; Ferreira D; Stomrud E; van Westen D; Tideman P; Palmqvist S; Mattsson-Carlgren N; Hort J; Hansson O; Westman E Alzheimers Res Ther; 2024 Jul; 16(1):153. PubMed ID: 38970077 [TBL] [Abstract][Full Text] [Related]
36. An explainable machine learning based prediction model for Alzheimer's disease in China longitudinal aging study. Yue L; Chen WG; Liu SC; Chen SB; Xiao SF Front Aging Neurosci; 2023; 15():1267020. PubMed ID: 38020780 [TBL] [Abstract][Full Text] [Related]
37. Accelerated Brain Aging in Amnestic Mild Cognitive Impairment: Relationships with Individual Cognitive Decline, Risk Factors for Alzheimer Disease, and Clinical Progression. Huang W; Li X; Li H; Wang W; Chen K; Xu K; Zhang J; Chen Y; Wei D; Shu N; Zhang Z Radiol Artif Intell; 2021 Sep; 3(5):e200171. PubMed ID: 34617021 [TBL] [Abstract][Full Text] [Related]
38. Combining Multimodal Behavioral Data of Gait, Speech, and Drawing for Classification of Alzheimer's Disease and Mild Cognitive Impairment. Yamada Y; Shinkawa K; Kobayashi M; Caggiano V; Nemoto M; Nemoto K; Arai T J Alzheimers Dis; 2021; 84(1):315-327. PubMed ID: 34542076 [TBL] [Abstract][Full Text] [Related]
39. Detection of Mild Cognitive Impairment and Alzheimer's Disease using Dual-task Gait Assessments and Machine Learning. Ghoraani B; Boettcher LN; Hssayeni MD; Rosenfeld A; Tolea MI; Galvin JE Biomed Signal Process Control; 2021 Feb; 64():. PubMed ID: 33123214 [TBL] [Abstract][Full Text] [Related]