These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 38156077)

  • 21. Hierarchical Structures for Superhydrophobic and Superoleophobic Surfaces.
    Teisala H; Butt HJ
    Langmuir; 2019 Aug; 35(33):10689-10703. PubMed ID: 30463408
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Blood repellent superhydrophobic surfaces constructed from nanoparticle-free and biocompatible materials.
    Celik N; Sahin F; Ruzi M; Yay M; Unal E; Onses MS
    Colloids Surf B Biointerfaces; 2021 Sep; 205():111864. PubMed ID: 34049000
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Self-Cleaning of Hydrophobic Rough Surfaces by Coalescence-Induced Wetting Transition.
    Zhang K; Li Z; Maxey M; Chen S; Karniadakis GE
    Langmuir; 2019 Feb; 35(6):2431-2442. PubMed ID: 30640480
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Advances in the Fabrication and Characterization of Superhydrophobic Surfaces Inspired by the Lotus Leaf.
    Farzam M; Beitollahpoor M; Solomon SE; Ashbaugh HS; Pesika NS
    Biomimetics (Basel); 2022 Nov; 7(4):. PubMed ID: 36412724
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Recent advances in designing superhydrophobic surfaces.
    Celia E; Darmanin T; Taffin de Givenchy E; Amigoni S; Guittard F
    J Colloid Interface Sci; 2013 Jul; 402():1-18. PubMed ID: 23647693
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Emerging applications of superhydrophilic-superhydrophobic micropatterns.
    Ueda E; Levkin PA
    Adv Mater; 2013 Mar; 25(9):1234-47. PubMed ID: 23345109
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Lotus-Inspired Multiscale Superhydrophobic AA5083 Resisting Surface Contamination and Marine Corrosion Attack.
    Zhang B; Xu W; Zhu Q; Yuan S; Li Y
    Materials (Basel); 2019 May; 12(10):. PubMed ID: 31096649
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Fabrication of biomimetic superhydrophobic surfaces inspired by lotus leaf and silver ragwort leaf.
    Lin J; Cai Y; Wang X; Ding B; Yu J; Wang M
    Nanoscale; 2011 Mar; 3(3):1258-62. PubMed ID: 21270991
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Nano to micro structural hierarchy is crucial for stable superhydrophobic and water-repellent surfaces.
    Su Y; Ji B; Zhang K; Gao H; Huang Y; Hwang K
    Langmuir; 2010 Apr; 26(7):4984-9. PubMed ID: 20092298
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effect of Texturing Environment on Wetting of Biomimetic Superhydrophobic Surfaces Designed by Femtosecond Laser Texturing.
    Basset S; Heisbourg G; Pascale-Hamri A; Benayoun S; Valette S
    Nanomaterials (Basel); 2022 Sep; 12(18):. PubMed ID: 36144887
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Wetting and self-cleaning properties of artificial superhydrophobic surfaces.
    Fürstner R; Barthlott W; Neinhuis C; Walzel P
    Langmuir; 2005 Feb; 21(3):956-61. PubMed ID: 15667174
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Self-cleaning efficiency of artificial superhydrophobic surfaces.
    Bhushan B; Jung YC; Koch K
    Langmuir; 2009 Mar; 25(5):3240-8. PubMed ID: 19239196
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Superhydrophobic surfaces fabricated by femtosecond laser with tunable water adhesion: from lotus leaf to rose petal.
    Long J; Fan P; Gong D; Jiang D; Zhang H; Li L; Zhong M
    ACS Appl Mater Interfaces; 2015 May; 7(18):9858-65. PubMed ID: 25906058
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Superhydrophobic lotus-leaf-like surface made from reduced graphene oxide through soft-lithographic duplication.
    Yun X; Xiong Z; He Y; Wang X
    RSC Adv; 2020 Jan; 10(9):5478-5486. PubMed ID: 35498279
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Robust and Eco-Friendly Superhydrophobic Starch Nanohybrid Materials with Engineered Lotus Leaf Mimetic Multiscale Hierarchical Structures.
    Ghasemlou M; Le PH; Daver F; Murdoch BJ; Ivanova EP; Adhikari B
    ACS Appl Mater Interfaces; 2021 Aug; 13(30):36558-36573. PubMed ID: 34284587
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The Lotus effect: superhydrophobicity and metastability.
    Marmur A
    Langmuir; 2004 Apr; 20(9):3517-9. PubMed ID: 15875376
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Mechanical and superhydrophobic stabilities of two-scale surfacial structure of lotus leaves.
    Yu Y; Zhao ZH; Zheng QS
    Langmuir; 2007 Jul; 23(15):8212-6. PubMed ID: 17583919
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Cellulose-Based Superhydrophobic Surface Decorated with Functional Groups Showing Distinct Wetting Abilities to Manipulate Water Harvesting.
    Huang W; Tang X; Qiu Z; Zhu W; Wang Y; Zhu YL; Xiao Z; Wang H; Liang D; Li J; Xie Y
    ACS Appl Mater Interfaces; 2020 Sep; 12(36):40968-40978. PubMed ID: 32805840
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Hierarchically structured superhydrophobic flowers with low hysteresis of the wild pansy (Viola tricolor) - new design principles for biomimetic materials.
    Schulte AJ; Droste DM; Koch K; Barthlott W
    Beilstein J Nanotechnol; 2011; 2():228-36. PubMed ID: 21977435
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Magnetic-Responsive Superhydrophobic Surface of Magnetorheological Elastomers Mimicking from Lotus Leaves to Rose Petals.
    Chen S; Zhu M; Zhang Y; Dong S; Wang X
    Langmuir; 2021 Feb; 37(7):2312-2321. PubMed ID: 33544610
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.