These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
200 related articles for article (PubMed ID: 38156628)
1. Using Artificial Intelligence as a Melanoma Screening Tool in Self-Referred Patients. Crawford ME; Kamali K; Dorey RA; MacIntyre OC; Cleminson K; MacGillivary ML; Green PJ; Langley RG; Purdy KS; DeCoste RC; Gruchy JR; Pasternak S; Oakley A; Hull PR J Cutan Med Surg; 2024; 28(1):37-43. PubMed ID: 38156628 [TBL] [Abstract][Full Text] [Related]
2. Artificial Intelligence and Its Effect on Dermatologists' Accuracy in Dermoscopic Melanoma Image Classification: Web-Based Survey Study. Maron RC; Utikal JS; Hekler A; Hauschild A; Sattler E; Sondermann W; Haferkamp S; Schilling B; Heppt MV; Jansen P; Reinholz M; Franklin C; Schmitt L; Hartmann D; Krieghoff-Henning E; Schmitt M; Weichenthal M; von Kalle C; Fröhling S; Brinker TJ J Med Internet Res; 2020 Sep; 22(9):e18091. PubMed ID: 32915161 [TBL] [Abstract][Full Text] [Related]
3. Artificial Intelligence vs Medical Providers in the Dermoscopic Diagnosis of Melanoma. Anderson JM; Tejani I; Jarmain T; Kellett L; Moy RL Cutis; 2023 May; 111(5):254-258. PubMed ID: 37406330 [TBL] [Abstract][Full Text] [Related]
5. [The Rise of Artificial Intelligence - High Prediction Accuracy in Early Detection of Pigmented Melanoma]. Jutzi T; Krieghoff-Henning EI; Brinker TJ Laryngorhinootologie; 2023 Jul; 102(7):496-503. PubMed ID: 36580975 [TBL] [Abstract][Full Text] [Related]
6. Evaluation of an artificial intelligence-based decision support for the detection of cutaneous melanoma in primary care: a prospective real-life clinical trial. Papachristou P; Söderholm M; Pallon J; Taloyan M; Polesie S; Paoli J; Anderson CD; Falk M Br J Dermatol; 2024 Jun; 191(1):125-133. PubMed ID: 38234043 [TBL] [Abstract][Full Text] [Related]
7. Diagnostic capacity of skin tumor artificial intelligence-assisted decision-making software in real-world clinical settings. Li CX; Fei WM; Shen CB; Wang ZY; Jing Y; Meng RS; Cui Y Chin Med J (Engl); 2020 Sep; 133(17):2020-2026. PubMed ID: 32810047 [TBL] [Abstract][Full Text] [Related]
8. Validation of artificial intelligence prediction models for skin cancer diagnosis using dermoscopy images: the 2019 International Skin Imaging Collaboration Grand Challenge. Combalia M; Codella N; Rotemberg V; Carrera C; Dusza S; Gutman D; Helba B; Kittler H; Kurtansky NR; Liopyris K; Marchetti MA; Podlipnik S; Puig S; Rinner C; Tschandl P; Weber J; Halpern A; Malvehy J Lancet Digit Health; 2022 May; 4(5):e330-e339. PubMed ID: 35461690 [TBL] [Abstract][Full Text] [Related]
10. Role of In Vivo Reflectance Confocal Microscopy in the Analysis of Melanocytic Lesions. Serban ED; Farnetani F; Pellacani G; Constantin MM Acta Dermatovenerol Croat; 2018 Apr; 26(1):64-67. PubMed ID: 29782304 [TBL] [Abstract][Full Text] [Related]
11. Diagnostic performance of augmented intelligence with 2D and 3D total body photography and convolutional neural networks in a high-risk population for melanoma under real-world conditions: A new era of skin cancer screening? Cerminara SE; Cheng P; Kostner L; Huber S; Kunz M; Maul JT; Böhm JS; Dettwiler CF; Geser A; Jakopović C; Stoffel LM; Peter JK; Levesque M; Navarini AA; Maul LV Eur J Cancer; 2023 Sep; 190():112954. PubMed ID: 37453242 [TBL] [Abstract][Full Text] [Related]
13. Results of the 2016 International Skin Imaging Collaboration International Symposium on Biomedical Imaging challenge: Comparison of the accuracy of computer algorithms to dermatologists for the diagnosis of melanoma from dermoscopic images. Marchetti MA; Codella NCF; Dusza SW; Gutman DA; Helba B; Kalloo A; Mishra N; Carrera C; Celebi ME; DeFazio JL; Jaimes N; Marghoob AA; Quigley E; Scope A; Yélamos O; Halpern AC; J Am Acad Dermatol; 2018 Feb; 78(2):270-277.e1. PubMed ID: 28969863 [TBL] [Abstract][Full Text] [Related]
14. Computer algorithms show potential for improving dermatologists' accuracy to diagnose cutaneous melanoma: Results of the International Skin Imaging Collaboration 2017. Marchetti MA; Liopyris K; Dusza SW; Codella NCF; Gutman DA; Helba B; Kalloo A; Halpern AC; J Am Acad Dermatol; 2020 Mar; 82(3):622-627. PubMed ID: 31306724 [TBL] [Abstract][Full Text] [Related]
15. Assessment of Accuracy of an Artificial Intelligence Algorithm to Detect Melanoma in Images of Skin Lesions. Phillips M; Marsden H; Jaffe W; Matin RN; Wali GN; Greenhalgh J; McGrath E; James R; Ladoyanni E; Bewley A; Argenziano G; Palamaras I JAMA Netw Open; 2019 Oct; 2(10):e1913436. PubMed ID: 31617929 [TBL] [Abstract][Full Text] [Related]
16. Characterizing the role of dermatologists in developing artificial intelligence for assessment of skin cancer. Zakhem GA; Fakhoury JW; Motosko CC; Ho RS J Am Acad Dermatol; 2021 Dec; 85(6):1544-1556. PubMed ID: 31972254 [TBL] [Abstract][Full Text] [Related]
17. Artificial intelligence in dermatopathology: Updates, strengths, and challenges. Cazzato G; Rongioletti F Clin Dermatol; 2024; 42(5):437-442. PubMed ID: 38909860 [TBL] [Abstract][Full Text] [Related]
18. Implementation of artificial intelligence algorithms for melanoma screening in a primary care setting. Giavina-Bianchi M; de Sousa RM; Paciello VZA; Vitor WG; Okita AL; Prôa R; Severino GLDS; Schinaid AA; Espírito Santo R; Machado BS PLoS One; 2021; 16(9):e0257006. PubMed ID: 34550970 [TBL] [Abstract][Full Text] [Related]
19. Clinical and Histopathologic Characteristics of Melanocytic Lesions on the Volar Skin Without Typical Dermoscopic Patterns. Mikoshiba Y; Minagawa A; Koga H; Yokokawa Y; Uhara H; Okuyama R JAMA Dermatol; 2019 May; 155(5):578-584. PubMed ID: 30865233 [TBL] [Abstract][Full Text] [Related]
20. Deep neural networks are superior to dermatologists in melanoma image classification. Brinker TJ; Hekler A; Enk AH; Berking C; Haferkamp S; Hauschild A; Weichenthal M; Klode J; Schadendorf D; Holland-Letz T; von Kalle C; Fröhling S; Schilling B; Utikal JS Eur J Cancer; 2019 Sep; 119():11-17. PubMed ID: 31401469 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]