BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 38156657)

  • 21. Comparison of Microwave Hyperthermia Applicator Designs with Fora Dipole and Connected Array.
    Yildiz G; Farhat I; Farrugia L; Bonello J; Zarb-Adami K; Sammut CV; Yilmaz T; Akduman I
    Sensors (Basel); 2023 Jul; 23(14):. PubMed ID: 37514884
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Documentation of a New Intracavitary Applicator for Transrectal Hyperthermia Designed for Prostate Cancer Cases: A Phantom Study.
    Kouloulias V; Nikolakopoulou A; Karanasiou I; Antypas C; Armpilia C; Uzunoglou N
    J Med Phys; 2018; 43(2):141-145. PubMed ID: 29962693
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A printed Yagi-Uda antenna for application in magnetic resonance thermometry guided microwave hyperthermia applicators.
    Paulides MM; Mestrom RM; Salim G; Adela BB; Numan WC; Drizdal T; Yeo DT; Smolders AB
    Phys Med Biol; 2017 Mar; 62(5):1831-1847. PubMed ID: 28052042
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Design of Site-Specific Microwave Phased Array Hyperthermia Applicators Using 434 MHz Reduced Cavity-Backed Patch Antenna.
    Baskaran D; Arunachalam K
    Bioelectromagnetics; 2020 Dec; 41(8):630-648. PubMed ID: 32956531
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Heating pattern of helical microwave intracavitary oesophageal applicator.
    Liu RL; Zhang EY; Gross EJ; Cetas TC
    Int J Hyperthermia; 1991; 7(4):577-86. PubMed ID: 1919153
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The significance of nanoparticles in brain cancer diagnosis and treatment: modeling and simulation.
    Badawi MI; Hafez KS
    Biomed Phys Eng Express; 2022 Apr; 8(3):. PubMed ID: 35405668
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Metamaterial lens applicator for microwave hyperthermia of breast cancer.
    Wang G; Gong Y
    Int J Hyperthermia; 2009; 25(6):434-45. PubMed ID: 19925323
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A Microstrip Antenna Using I-Shaped Metamaterial Superstrate with Enhanced Gain for Multiband Wireless Systems.
    Ajewole B; Kumar P; Afullo T
    Micromachines (Basel); 2023 Feb; 14(2):. PubMed ID: 36838111
    [TBL] [Abstract][Full Text] [Related]  

  • 29. SAR characteristics of three types of Contact Flexible Microstrip Applicators for superficial hyperthermia.
    Lamaitre G; Van Dijk JD; Gelvich EA; Wiersma J; Schneider CJ
    Int J Hyperthermia; 1996; 12(2):255-69. PubMed ID: 8926393
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Superficial heat reduction technique for a hybrid microwave-optical device.
    Al-Armaghany A; Tong K; Leung TS
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():3749-52. PubMed ID: 24110546
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A sub 1 GHz ultra miniaturized folded dipole patch antenna for biomedical applications.
    Chishti AR; Aziz A; Aljaloud K; Tahir FA; Abbasi QH; Khan ZU; Hussain R
    Sci Rep; 2023 Jun; 13(1):9900. PubMed ID: 37336998
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Design of a compact antenna with flared groundplane for a wearable breast hyperthermia system.
    Curto S; Prakash P
    Int J Hyperthermia; 2015; 31(7):726-36. PubMed ID: 26368277
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Non-Invasive Microwave Hyperthermia and Simultaneous Temperature Monitoring with a Single Theranostic Applicator
    Maenhout G; Markovic T; Nauwelaers B
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():1314-1317. PubMed ID: 34891527
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Microstrip-antenna design for hyperthermia treatment of superficial tumors.
    Montecchia F
    IEEE Trans Biomed Eng; 1992 Jun; 39(6):580-8. PubMed ID: 1601439
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Cardiac tissue ablation with catheter-based microwave heating.
    Rappaport C
    Int J Hyperthermia; 2004 Nov; 20(7):769-80. PubMed ID: 15675671
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Heating system with a lens applicator for 430 MHz microwave hyperthermia.
    Nikawa Y; Kikuchi M; Terakawa T; Matsuda T
    Int J Hyperthermia; 1990; 6(3):671-84. PubMed ID: 2376678
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Evaluation of a dual-arm Archimedean spiral array for microwave hyperthermia.
    Johnson JE; Neuman DG; Maccarini PF; Juang T; Stauffer PR; Turner P
    Int J Hyperthermia; 2006 Sep; 22(6):475-90. PubMed ID: 16971368
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Miniature microwave applicator for murine bladder hyperthermia studies.
    Salahi S; Maccarini PF; Rodrigues DB; Etienne W; Landon CD; Inman BA; Dewhirst MW; Stauffer PR
    Int J Hyperthermia; 2012; 28(5):456-65. PubMed ID: 22690856
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Theoretical and experimental analysis of air cooling for intracavitary microwave hyperthermia applicators.
    Yeh MM; Trembly BS; Douple EB; Ryan TP; Hoopes PJ; Jonsson E; Heaney JA
    IEEE Trans Biomed Eng; 1994 Sep; 41(9):874-82. PubMed ID: 7959814
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Contact flexible microstrip applicators (CFMA) in a range from microwaves up to short waves.
    Gelvich EA; Mazokhin VN
    IEEE Trans Biomed Eng; 2002 Sep; 49(9):1015-23. PubMed ID: 12214873
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.