These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 38157247)

  • 1. van der Waals Parameter Scanning with Amber Nucleic Acid Force Fields: Revisiting Means to Better Capture the RNA/DNA Structure through MD.
    Love O; Winkler L; Cheatham TE
    J Chem Theory Comput; 2024 Jan; 20(2):625-643. PubMed ID: 38157247
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improved Force Field Parameters Lead to a Better Description of RNA Structure.
    Bergonzo C; Cheatham TE
    J Chem Theory Comput; 2015 Sep; 11(9):3969-72. PubMed ID: 26575892
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structures and Dynamics of DNA Mini-Dumbbells Are Force Field Dependent.
    Winkler L; Galindo-Murillo R; Cheatham TE
    J Chem Theory Comput; 2023 Apr; 19(8):2198-2212. PubMed ID: 36976268
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Highly sampled tetranucleotide and tetraloop motifs enable evaluation of common RNA force fields.
    Bergonzo C; Henriksen NM; Roe DR; Cheatham TE
    RNA; 2015 Sep; 21(9):1578-90. PubMed ID: 26124199
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assessing the Current State of Amber Force Field Modifications for DNA.
    Galindo-Murillo R; Robertson JC; Zgarbová M; Šponer J; Otyepka M; Jurečka P; Cheatham TE
    J Chem Theory Comput; 2016 Aug; 12(8):4114-27. PubMed ID: 27300587
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assessing the Current State of Amber Force Field Modifications for DNA─2023 Edition.
    Love O; Galindo-Murillo R; Zgarbová M; Šponer J; Jurečka P; Cheatham TE
    J Chem Theory Comput; 2023 Jul; 19(13):4299-4307. PubMed ID: 37340948
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of Force Field Parameters for the Simulation of Single- and Double-Stranded DNA Molecules and DNA-Protein Complexes.
    Tucker MR; Piana S; Tan D; LeVine MV; Shaw DE
    J Phys Chem B; 2022 Jun; 126(24):4442-4457. PubMed ID: 35694853
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Z-DNA as a Touchstone for Additive Empirical Force Fields and a Refinement of the Alpha/Gamma DNA Torsions for AMBER.
    Zgarbová M; Šponer J; Jurečka P
    J Chem Theory Comput; 2021 Oct; 17(10):6292-6301. PubMed ID: 34582195
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Disagreement Between the Structure of the dTpT Thymine Pair Determined by NMR and Molecular Dynamics Simulations Using Amber 14 Force Fields.
    Nganou C; Kennedy SD; McCamant DW
    J Phys Chem B; 2016 Feb; 120(7):1250-8. PubMed ID: 26836489
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular dynamics and quantum mechanics of RNA: conformational and chemical change we can believe in.
    Ditzler MA; Otyepka M; Sponer J; Walter NG
    Acc Chem Res; 2010 Jan; 43(1):40-7. PubMed ID: 19754142
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Benchmarking AMBER force fields for RNA: comparisons to NMR spectra for single-stranded r(GACC) are improved by revised χ torsions.
    Yildirim I; Stern HA; Tubbs JD; Kennedy SD; Turner DH
    J Phys Chem B; 2011 Jul; 115(29):9261-70. PubMed ID: 21721539
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Short-Range Imbalances in the AMBER Lennard-Jones Potential for (Deoxy)Ribose···Nucleobase Lone-Pair···π Contacts in Nucleic Acids.
    Mráziková K; Šponer J; Mlýnský V; Auffinger P; Kruse H
    J Chem Inf Model; 2021 Nov; 61(11):5644-5657. PubMed ID: 34738826
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Benchmarking the Drude Polarizable Force Field Using the r(GACC) Tetranucleotide.
    Winkler L; Cheatham TE
    J Chem Inf Model; 2023 Apr; 63(8):2505-2511. PubMed ID: 36996447
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Refinement of the Sugar-Phosphate Backbone Torsion Beta for AMBER Force Fields Improves the Description of Z- and B-DNA.
    Zgarbová M; Šponer J; Otyepka M; Cheatham TE; Galindo-Murillo R; Jurečka P
    J Chem Theory Comput; 2015 Dec; 11(12):5723-36. PubMed ID: 26588601
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Computer Folding of RNA Tetraloops: Identification of Key Force Field Deficiencies.
    Kührová P; Best RB; Bottaro S; Bussi G; Šponer J; Otyepka M; Banáš P
    J Chem Theory Comput; 2016 Sep; 12(9):4534-48. PubMed ID: 27438572
    [TBL] [Abstract][Full Text] [Related]  

  • 16. How accurate are accurate force-fields for B-DNA?
    Dans PD; Ivani I; Hospital A; Portella G; González C; Orozco M
    Nucleic Acids Res; 2017 Apr; 45(7):4217-4230. PubMed ID: 28088759
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Polarizable Force Field for DNA Based on the Classical Drude Oscillator: II. Microsecond Molecular Dynamics Simulations of Duplex DNA.
    Lemkul JA; MacKerell AD
    J Chem Theory Comput; 2017 May; 13(5):2072-2085. PubMed ID: 28398748
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Consequences of Overfitting the van der Waals Radii of Ions.
    Smith M; Li Z; Landry L; Merz KM; Li P
    J Chem Theory Comput; 2023 Apr; 19(7):2064-2074. PubMed ID: 36952374
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optimizing Protein-Protein van der Waals Interactions for the AMBER ff9x/ff12 Force Field.
    Chapman DE; Steck JK; Nerenberg PS
    J Chem Theory Comput; 2014 Jan; 10(1):273-81. PubMed ID: 26579910
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimization of an AMBER force field for the artificial nucleic acid, LNA, and benchmarking with NMR of L(CAAU).
    Condon DE; Yildirim I; Kennedy SD; Mort BC; Kierzek R; Turner DH
    J Phys Chem B; 2014 Feb; 118(5):1216-28. PubMed ID: 24377321
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.