BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 38157299)

  • 1. Two parabrachial Cck neurons involved in the feedback control of thirst or salt appetite.
    Matsuda T; Kobayashi K; Kobayashi K; Noda M
    Cell Rep; 2024 Jan; 43(1):113619. PubMed ID: 38157299
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Distinct neural mechanisms for the control of thirst and salt appetite in the subfornical organ.
    Matsuda T; Hiyama TY; Niimura F; Matsusaka T; Fukamizu A; Kobayashi K; Kobayashi K; Noda M
    Nat Neurosci; 2017 Feb; 20(2):230-241. PubMed ID: 27991901
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cholecystokinin actions in the parabrachial nucleus: effects on thirst and salt appetite.
    Menani JV; Johnson AK
    Am J Physiol; 1998 Nov; 275(5 Pt 2):R1431-7. PubMed ID: 9791058
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The neuroendocrinology of thirst and salt appetite: visceral sensory signals and mechanisms of central integration.
    Johnson AK; Thunhorst RL
    Front Neuroendocrinol; 1997 Jul; 18(3):292-353. PubMed ID: 9237080
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reciprocal Control of Drinking Behavior by Median Preoptic Neurons in Mice.
    Abbott SB; Machado NL; Geerling JC; Saper CB
    J Neurosci; 2016 Aug; 36(31):8228-37. PubMed ID: 27488641
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Water deprivation and the double- depletion hypothesis: common neural mechanisms underlie thirst and salt appetite.
    De Luca LA; Vendramini RC; Pereira DT; Colombari DA; David RB; de Paula PM; Menani JV
    Braz J Med Biol Res; 2007 May; 40(5):707-12. PubMed ID: 17464434
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Brain sodium sensing for regulation of thirst, salt appetite, and blood pressure.
    Hiyama TY
    Physiol Rep; 2024 Mar; 12(5):e15970. PubMed ID: 38479999
    [TBL] [Abstract][Full Text] [Related]  

  • 8. AgRP Neurons Can Increase Food Intake during Conditions of Appetite Suppression and Inhibit Anorexigenic Parabrachial Neurons.
    Essner RA; Smith AG; Jamnik AA; Ryba AR; Trutner ZD; Carter ME
    J Neurosci; 2017 Sep; 37(36):8678-8687. PubMed ID: 28821663
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hierarchical neural architecture underlying thirst regulation.
    Augustine V; Gokce SK; Lee S; Wang B; Davidson TJ; Reimann F; Gribble F; Deisseroth K; Lois C; Oka Y
    Nature; 2018 Mar; 555(7695):204-209. PubMed ID: 29489747
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A tale of two circuits: CCK
    Roman CW; Sloat SR; Palmiter RD
    Neuroscience; 2017 Sep; 358():316-324. PubMed ID: 28684275
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mapping brain Fos immunoreactivity in response to water deprivation and partial rehydration: Influence of sodium intake.
    Dalmasso C; Antunes-Rodrigues J; Vivas L; De Luca LA
    Physiol Behav; 2015 Nov; 151():494-501. PubMed ID: 26297688
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of the lateral parabrachial nucleus in the control of sodium appetite.
    Menani JV; De Luca LA; Johnson AK
    Am J Physiol Regul Integr Comp Physiol; 2014 Feb; 306(4):R201-10. PubMed ID: 24401989
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Angiotensin, thirst, and sodium appetite.
    Fitzsimons JT
    Physiol Rev; 1998 Jul; 78(3):583-686. PubMed ID: 9674690
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sodium appetite and thirst do not require angiotensinogen production in astrocytes or hepatocytes.
    Peltekian L; Gasparini S; Fazan FS; Karthik S; Iverson G; Resch JM; Geerling JC
    J Physiol; 2023 Aug; 601(16):3499-3532. PubMed ID: 37291801
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sodium deprivation and salt intake activate separate neuronal subpopulations in the nucleus of the solitary tract and the parabrachial complex.
    Geerling JC; Loewy AD
    J Comp Neurol; 2007 Oct; 504(4):379-403. PubMed ID: 17663450
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Corticotropin-releasing hormone in the lateral parabrachial nucleus inhibits sodium appetite in rats.
    De Castro e Silva E; Fregoneze JB; Johnson AK
    Am J Physiol Regul Integr Comp Physiol; 2006 Apr; 290(4):R1136-41. PubMed ID: 16357101
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Distinct CCK-positive SFO neurons are involved in persistent or transient suppression of water intake.
    Matsuda T; Hiyama TY; Kobayashi K; Kobayashi K; Noda M
    Nat Commun; 2020 Nov; 11(1):5692. PubMed ID: 33173030
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Integration of Hypernatremia and Angiotensin II by the Organum Vasculosum of the Lamina Terminalis Regulates Thirst.
    Kinsman BJ; Simmonds SS; Browning KN; Wenner MM; Farquhar WB; Stocker SD
    J Neurosci; 2020 Mar; 40(10):2069-2079. PubMed ID: 32005766
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genetic identification of a neural circuit that suppresses appetite.
    Carter ME; Soden ME; Zweifel LS; Palmiter RD
    Nature; 2013 Nov; 503(7474):111-4. PubMed ID: 24121436
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Brain serotonin blockade and paradoxical salt intake in rats.
    De Luca LA; Barbosa SP; Menani JV
    Neuroscience; 2003; 121(4):1055-61. PubMed ID: 14580955
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.