BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 38157434)

  • 1. Anatomical Substrates of Rapid Eye Movement Sleep Rebound in a Rodent Model of Post-sevoflurane Sleep Disruption.
    Atluri N; Dulko E; Jedrusiak M; Klos J; Osuru HP; Davis E; Beenhakker M; Kapur J; Zuo Z; Lunardi N
    Anesthesiology; 2024 Apr; 140(4):729-741. PubMed ID: 38157434
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Association between the activation of MCH and orexin immunorective neurons and REM sleep architecture during REM rebound after a three day long REM deprivation.
    Kitka T; Adori C; Katai Z; Vas S; Molnar E; Papp RS; Toth ZE; Bagdy G
    Neurochem Int; 2011 Oct; 59(5):686-94. PubMed ID: 21740944
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The influence of rapid eye movement sleep deprivation on nociceptive transmission and the duration of facial allodynia in rats: a behavioral and Fos immunohistochemical study.
    Kim SH; Park JY; Shin HE; Lee SB; Ryu DW; Kim TW; Park JW
    J Headache Pain; 2019 Mar; 20(1):21. PubMed ID: 30823867
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Selective activation of the extended ventrolateral preoptic nucleus during rapid eye movement sleep.
    Lu J; Bjorkum AA; Xu M; Gaus SE; Shiromani PJ; Saper CB
    J Neurosci; 2002 Jun; 22(11):4568-76. PubMed ID: 12040064
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rapid eye movement sleep debt accrues in mice exposed to volatile anesthetics.
    Pick J; Chen Y; Moore JT; Sun Y; Wyner AJ; Friedman EB; Kelz MB
    Anesthesiology; 2011 Oct; 115(4):702-12. PubMed ID: 21934405
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Preoptic area neurons and the homeostatic regulation of rapid eye movement sleep.
    Gvilia I; Turner A; McGinty D; Szymusiak R
    J Neurosci; 2006 Mar; 26(11):3037-44. PubMed ID: 16540582
    [TBL] [Abstract][Full Text] [Related]  

  • 7. c-Fos expression in neurons projecting from the preoptic and lateral hypothalamic areas to the ventrolateral periaqueductal gray in relation to sleep states.
    Hsieh KC; Gvilia I; Kumar S; Uschakov A; McGinty D; Alam MN; Szymusiak R
    Neuroscience; 2011 Aug; 188():55-67. PubMed ID: 21601616
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Neurochemical mechanisms of sleep regulation].
    Glas Srp Akad Nauka Med; 2009; (50):97-109. PubMed ID: 20666118
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fos expression in orexin neurons varies with behavioral state.
    Estabrooke IV; McCarthy MT; Ko E; Chou TC; Chemelli RM; Yanagisawa M; Saper CB; Scammell TE
    J Neurosci; 2001 Mar; 21(5):1656-62. PubMed ID: 11222656
    [TBL] [Abstract][Full Text] [Related]  

  • 10. RGS Proteins and Gαi2 Modulate Sleep, Wakefulness, and Disruption of Sleep/ Wake States after Isoflurane and Sevoflurane Anesthesia.
    Zhang H; Wheat H; Wang P; Jiang S; Baghdoyan HA; Neubig RR; Shi XY; Lydic R
    Sleep; 2016 Feb; 39(2):393-404. PubMed ID: 26564126
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Activation of c-fos in GABAergic neurones in the preoptic area during sleep and in response to sleep deprivation.
    Gong H; McGinty D; Guzman-Marin R; Chew KT; Stewart D; Szymusiak R
    J Physiol; 2004 May; 556(Pt 3):935-46. PubMed ID: 14966298
    [TBL] [Abstract][Full Text] [Related]  

  • 12. c-Fos expression in preoptic nuclei as a marker of sleep rebound in the rat.
    Dentico D; Amici R; Baracchi F; Cerri M; Del Sindaco E; Luppi M; Martelli D; Perez E; Zamboni G
    Eur J Neurosci; 2009 Aug; 30(4):651-61. PubMed ID: 19686475
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gene expression in rat vestibular and reticular structures during and after space flight.
    Pompeiano O; d'Ascanio P; Centini C; Pompeiano M; Balaban E
    Neuroscience; 2002; 114(1):135-55. PubMed ID: 12207961
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cholinergic and noncholinergic brainstem neurons expressing Fos after paradoxical (REM) sleep deprivation and recovery.
    Verret L; Léger L; Fort P; Luppi PH
    Eur J Neurosci; 2005 May; 21(9):2488-504. PubMed ID: 15932606
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Contribution of REM sleep to Fos and FRA expression in the vestibular nuclei of rat leading to vestibular adaptation during the STS-90 Neurolab Mission.
    Pompeiano O
    Arch Ital Biol; 2007 Jan; 145(1):55-85. PubMed ID: 17274184
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A restricted parabrachial pontine region is active during non-rapid eye movement sleep.
    Torterolo P; Sampogna S; Chase MH
    Neuroscience; 2011 Sep; 190():184-93. PubMed ID: 21704676
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Selective stimulations and lesions of the rat brain nuclei as the models for research of the human sleep pathology mechanisms].
    Šaponjić J
    Glas Srp Akad Nauka Med; 2011; (51):85-97. PubMed ID: 22165729
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cholinergic Oculomotor Nucleus Activity Is Induced by REM Sleep Deprivation Negatively Impacting on Cognition.
    Santos PD; Targa ADS; Noseda ACD; Rodrigues LS; Fagotti J; Lima MMS
    Mol Neurobiol; 2017 Sep; 54(7):5721-5729. PubMed ID: 27660264
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of cholinergic and non-cholinergic neurons in the pons expressing phosphorylated cyclic adenosine monophosphate response element-binding protein as a function of rapid eye movement sleep.
    Datta S; Siwek DF; Stack EC
    Neuroscience; 2009 Sep; 163(1):397-414. PubMed ID: 19540313
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chronic escitalopram treatment attenuated the accelerated rapid eye movement sleep transitions after selective rapid eye movement sleep deprivation: a model-based analysis using Markov chains.
    Kostyalik D; Vas S; Kátai Z; Kitka T; Gyertyán I; Bagdy G; Tóthfalusi L
    BMC Neurosci; 2014 Nov; 15():120. PubMed ID: 25406958
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.