These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 38157441)

  • 1. Large Fluorescence Enhancement via Lossless All-Dielectric Spherical Mesocavities.
    Zakomirnyi VI; Moroz A; Bhargava R; Rasskazov IL
    ACS Nano; 2024 Jan; 18(2):1621-1628. PubMed ID: 38157441
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhancing the radiative emission rate of single molecules by a plasmonic nanoantenna weakly coupled with a dielectric substrate.
    Chen XW; Lee KG; Eghlidi H; Götzinger S; Sandoghdar V
    Opt Express; 2015 Dec; 23(26):32986-92. PubMed ID: 26831966
    [TBL] [Abstract][Full Text] [Related]  

  • 3. All-Dielectric Silicon Nanogap Antennas To Enhance the Fluorescence of Single Molecules.
    Regmi R; Berthelot J; Winkler PM; Mivelle M; Proust J; Bedu F; Ozerov I; Begou T; Lumeau J; Rigneault H; García-Parajó MF; Bidault S; Wenger J; Bonod N
    Nano Lett; 2016 Aug; 16(8):5143-51. PubMed ID: 27399057
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Plasmonic Surface Lattice Resonances: Theory and Computation.
    Cherqui C; Bourgeois MR; Wang D; Schatz GC
    Acc Chem Res; 2019 Sep; 52(9):2548-2558. PubMed ID: 31465203
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Radiative decay engineering: biophysical and biomedical applications.
    Lakowicz JR
    Anal Biochem; 2001 Nov; 298(1):1-24. PubMed ID: 11673890
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Single-emitter super-resolved imaging of radiative decay rate enhancement in dielectric gap nanoantennas.
    Córdova-Castro RM; van Dam B; Lauri A; Maier SA; Sapienza R; De Wilde Y; Izeddin I; Krachmalnicoff V
    Light Sci Appl; 2024 Jan; 13(1):7. PubMed ID: 38167240
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Silicon Nanoantenna Mix Arrays for a Trifecta of Quantum Emitter Enhancements.
    Dong Z; Gorelik S; Paniagua-Dominguez R; Yik J; Ho J; Tjiptoharsono F; Lassalle E; Rezaei SD; Neo DCJ; Bai P; Kuznetsov AI; Yang JKW
    Nano Lett; 2021 Jun; 21(11):4853-4860. PubMed ID: 34041907
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optical radiation force on a dielectric sphere by a polarized Airy beam.
    Tang H; Sun H; Li R; Yang L; Song N; Zhang S; Wei B; Zhu Z; Wei B; Gong S; Mitri FG
    J Opt Soc Am A Opt Image Sci Vis; 2022 Nov; 39(11):2090-2103. PubMed ID: 36520706
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fluorescence enhancement in visible light: dielectric or noble metal?
    Sun S; Wu L; Bai P; Png CE
    Phys Chem Chem Phys; 2016 Jul; 18(28):19324-35. PubMed ID: 27374052
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Light Concentration by Metal-Dielectric Micro-Resonators for SERS Sensing.
    Sarychev AK; Ivanov A; Lagarkov A; Barbillon G
    Materials (Basel); 2018 Dec; 12(1):. PubMed ID: 30598001
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-Refractive-Index Materials for Giant Enhancement of the Transverse Magneto-Optical Kerr Effect.
    Moncada-Villa E; Mejía-Salazar JR
    Sensors (Basel); 2020 Feb; 20(4):. PubMed ID: 32053897
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Radiative decay engineering 7: Tamm state-coupled emission using a hybrid plasmonic-photonic structure.
    Badugu R; Descrovi E; Lakowicz JR
    Anal Biochem; 2014 Jan; 445():1-13. PubMed ID: 24135654
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Epitaxially Grown Silicon Nanowires with a Gold Molecular Adhesion Layer for Core/Shell Structures with Compact Mie and Plasmon Resonances.
    Murphey CGE; Park JS; Kim S; Cahoon JF
    ACS Nano; 2023 Nov; 17(21):21739-21748. PubMed ID: 37890020
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deep Subwavelength-Scale Light Focusing and Confinement in Nanohole-Structured Mesoscale Dielectric Spheres.
    Cao Y; Liu Z; Minin OV; Minin IV
    Nanomaterials (Basel); 2019 Feb; 9(2):. PubMed ID: 30717306
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of nonlocal dielectric response on the Au tip-enhanced fluorescence effect.
    Pei H; Wei Y; Dai Q
    J Phys Condens Matter; 2021 Feb; 33(7):075003. PubMed ID: 33152718
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dielectric metasurfaces for next-generation optical biosensing: a comparison with plasmonic sensing.
    Chung T; Wang H; Cai H
    Nanotechnology; 2023 Jul; 34(40):. PubMed ID: 37352839
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Strong enhancement of the radiative decay rate of emitters by single plasmonic nanoantennas.
    Muskens OL; Giannini V; Sanchez-Gil JA; Gómez Rivas J
    Nano Lett; 2007 Sep; 7(9):2871-5. PubMed ID: 17683156
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Directional light emission by electric and magnetic dipoles near a nanosphere: an analytical approach based on the generalized Mie theory.
    Yao K; Zheng Y
    Opt Lett; 2021 Jan; 46(2):302-305. PubMed ID: 33449012
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Extraordinary Fluorescence Enhancement in Metal-Dielectric Core-Shell Nanoparticles.
    Rasskazov IL; Moroz A; Carney PS
    J Phys Chem Lett; 2021 Jul; 12(27):6425-6430. PubMed ID: 34236195
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mie scattering revisited: Study of bichromatic Mie scattering of electromagnetic waves by a distribution of spherical particles.
    Olivares IE; Carrazana P
    Rev Sci Instrum; 2020 Aug; 91(8):083112. PubMed ID: 32872902
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.