These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 38157448)

  • 41. Introduction of guanidinium-modified deoxyuridine into the substrate binding regions of DNAzyme 10-23 to enhance target affinity: implications for DNAzyme design.
    Lam CH; Perrin DM
    Bioorg Med Chem Lett; 2010 Sep; 20(17):5119-22. PubMed ID: 20678934
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Revitalization of six abandoned catalytic DNA species reveals a common three-way junction framework and diverse catalytic cores.
    Chiuman W; Li Y
    J Mol Biol; 2006 Mar; 357(3):748-54. PubMed ID: 16480741
    [TBL] [Abstract][Full Text] [Related]  

  • 43. An RNA-Cleaving DNAzyme That Requires an Organic Solvent to Function.
    Chang T; Li G; Chang D; Amini R; Zhu X; Zhao T; Gu J; Li Z; Li Y
    Angew Chem Int Ed Engl; 2023 Oct; 62(42):e202310941. PubMed ID: 37648674
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Pursuing DNA catalysts for protein modification.
    Silverman SK
    Acc Chem Res; 2015 May; 48(5):1369-79. PubMed ID: 25939889
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The importance of peripheral sequences in determining the metal selectivity of an in vitro-selected Co(2+) -dependent DNAzyme.
    Nelson KE; Ihms HE; Mazumdar D; Bruesehoff PJ; Lu Y
    Chembiochem; 2012 Feb; 13(3):381-91. PubMed ID: 22250000
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Use of deoxyribozymes in RNA research.
    Silverman SK; Baum DA
    Methods Enzymol; 2009; 469():95-117. PubMed ID: 20946786
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Toward an RNaseA mimic: A DNAzyme with imidazoles and cationic amines.
    Lermer L; Roupioz Y; Ting R; Perrin DM
    J Am Chem Soc; 2002 Aug; 124(34):9960-1. PubMed ID: 12188639
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Catalytic molecular logic devices by DNAzyme displacement.
    Brown CW; Lakin MR; Stefanovic D; Graves SW
    Chembiochem; 2014 May; 15(7):950-4. PubMed ID: 24692254
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The architecture of the 10-23 DNAzyme and its implications for DNA-mediated catalysis.
    Borggräfe J; Gertzen CGW; Viegas A; Gohlke H; Etzkorn M
    FEBS J; 2023 Apr; 290(8):2011-2021. PubMed ID: 36478072
    [TBL] [Abstract][Full Text] [Related]  

  • 50. High-Throughput Analysis and Engineering of Ribozymes and Deoxyribozymes by Sequencing.
    Yokobayashi Y
    Acc Chem Res; 2020 Dec; 53(12):2903-2912. PubMed ID: 33164502
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Cellular uptake, distribution, and stability of 10-23 deoxyribozymes.
    Dass CR; Saravolac EG; Li Y; Sun LQ
    Antisense Nucleic Acid Drug Dev; 2002 Oct; 12(5):289-99. PubMed ID: 12477279
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Characterization of non-8-17 sequences uncovers structurally diverse RNA-cleaving deoxyribozymes.
    Lam JC; Kwan SO; Li Y
    Mol Biosyst; 2011 Jul; 7(7):2139-46. PubMed ID: 21523306
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Locked nucleoside analogues expand the potential of DNAzymes to cleave structured RNA targets.
    Vester B; Hansen LH; Lundberg LB; Babu BR; Sørensen MD; Wengel J; Douthwaite S
    BMC Mol Biol; 2006 Jun; 7():19. PubMed ID: 16753066
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Two DNAzymes targeting the telomerase mRNA with large difference in Mg2+ concentration for maximal catalytic activity.
    Yuan BF; Xue Y; Luo M; Hao YH; Tan Z
    Int J Biochem Cell Biol; 2007; 39(6):1119-29. PubMed ID: 17499543
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Inability of DNAzymes to cleave RNA in vivo is due to limited Mg[Formula: see text] concentration in cells.
    Victor J; Steger G; Riesner D
    Eur Biophys J; 2018 May; 47(4):333-343. PubMed ID: 29248953
    [TBL] [Abstract][Full Text] [Related]  

  • 56. DNA Oligonucleotide 3'-Phosphorylation by a DNA Enzyme.
    Camden AJ; Walsh SM; Suk SH; Silverman SK
    Biochemistry; 2016 May; 55(18):2671-6. PubMed ID: 27063020
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Theranostic DNAzymes.
    Zhou W; Ding J; Liu J
    Theranostics; 2017; 7(4):1010-1025. PubMed ID: 28382172
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Gene silencing nucleic acids designed by scanning arrays: anti-EGFR activity of siRNA, ribozyme and DNA enzymes targeting a single hybridization-accessible region using the same delivery system.
    Beale G; Hollins AJ; Benboubetra M; Sohail M; Fox SP; Benter I; Akhtar S
    J Drug Target; 2003 Aug; 11(7):449-56. PubMed ID: 15203934
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Nucleic acid enzymes based on functionalized nucleosides.
    Hollenstein M
    Curr Opin Chem Biol; 2019 Oct; 52():93-101. PubMed ID: 31307007
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Isolation of novel ribozymes that ligate AMP-activated RNA substrates.
    Hager AJ; Szostak JW
    Chem Biol; 1997 Aug; 4(8):607-17. PubMed ID: 9281527
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.