These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 38157766)

  • 1. pH-responsive polymeric nanomaterials for the treatment of oral biofilm infections.
    Jeong GJ; Rather MA; Khan F; Tabassum N; Mandal M; Kim YM
    Colloids Surf B Biointerfaces; 2024 Feb; 234():113727. PubMed ID: 38157766
    [TBL] [Abstract][Full Text] [Related]  

  • 2. pH-Responsive polymeric nanocarriers for efficient killing of cariogenic bacteria in biofilms.
    Zhao Z; Ding C; Wang Y; Tan H; Li J
    Biomater Sci; 2019 Mar; 7(4):1643-1651. PubMed ID: 30723851
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dual-sensitive antibacterial peptide nanoparticles prevent dental caries.
    Zhang P; Wu S; Li J; Bu X; Dong X; Chen N; Li F; Zhu J; Sang L; Zeng Y; Liang S; Yu Z; Liu Z
    Theranostics; 2022; 12(10):4818-4833. PubMed ID: 35832082
    [No Abstract]   [Full Text] [Related]  

  • 4. Nanocarriers with conjugated antimicrobials to eradicate pathogenic biofilms evaluated in murine in vivo and human ex vivo infection models.
    Liu Y; Ren Y; Li Y; Su L; Zhang Y; Huang F; Liu J; Liu J; van Kooten TG; An Y; Shi L; van der Mei HC; Busscher HJ
    Acta Biomater; 2018 Oct; 79():331-343. PubMed ID: 30172935
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced design and formulation of nanoparticles for anti-biofilm drug delivery.
    Sims KR; Liu Y; Hwang G; Jung HI; Koo H; Benoit DSW
    Nanoscale; 2018 Dec; 11(1):219-236. PubMed ID: 30525159
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Polyzwitterionic micelles with antimicrobial-conjugation for eradication of drug-resistant bacterial biofilms.
    Qian Y; Hu X; Wang J; Li Y; Liu Y; Xie L
    Colloids Surf B Biointerfaces; 2023 Nov; 231():113542. PubMed ID: 37717312
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis and self-assembly of curcumin-modified amphiphilic polymeric micelles with antibacterial activity.
    Barros CHN; Hiebner DW; Fulaz S; Vitale S; Quinn L; Casey E
    J Nanobiotechnology; 2021 Apr; 19(1):104. PubMed ID: 33849570
    [TBL] [Abstract][Full Text] [Related]  

  • 8. pH-activated nanoparticles for controlled topical delivery of farnesol to disrupt oral biofilm virulence.
    Horev B; Klein MI; Hwang G; Li Y; Kim D; Koo H; Benoit DS
    ACS Nano; 2015 Mar; 9(3):2390-404. PubMed ID: 25661192
    [TBL] [Abstract][Full Text] [Related]  

  • 9. pH-Responsive, Charge-Reversing Layer-by-Layer Nanoparticle Surfaces Enhance Biofilm Penetration and Eradication.
    Deiss-Yehiely E; Cárcamo-Oyarce G; Berger AG; Ribbeck K; Hammond PT
    ACS Biomater Sci Eng; 2023 Aug; 9(8):4794-4804. PubMed ID: 37390118
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Antibacterial and Biofilm-Eradicating Activities of pH-Responsive Vesicles against
    Cui S; Qiao J; Xiong MP
    Mol Pharm; 2022 Jul; 19(7):2406-2417. PubMed ID: 35507414
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synergy between pH- and hypoxia-responsiveness in antibiotic-loaded micelles for eradicating mature, infectious biofilms.
    Su L; Li Y; Tian S; Huang F; Ren Y; Yang C; van der Mei HC; Busscher HJ; Shi L
    Acta Biomater; 2022 Dec; 154():559-571. PubMed ID: 36243368
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Surface-Adaptive, Antimicrobially Loaded, Micellar Nanocarriers with Enhanced Penetration and Killing Efficiency in Staphylococcal Biofilms.
    Liu Y; Busscher HJ; Zhao B; Li Y; Zhang Z; van der Mei HC; Ren Y; Shi L
    ACS Nano; 2016 Apr; 10(4):4779-89. PubMed ID: 26998731
    [TBL] [Abstract][Full Text] [Related]  

  • 13. pH-activated antibiofilm strategies for controlling dental caries.
    Wang X; Li J; Zhang S; Zhou W; Zhang L; Huang X
    Front Cell Infect Microbiol; 2023; 13():1130506. PubMed ID: 36949812
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ultrasound-Enhanced Antibacterial Activity of Polymeric Nanoparticles for Eradicating Bacterial Biofilms.
    Gopalakrishnan S; Gupta A; Makabenta JMV; Park J; Amante JJ; Chattopadhyay AN; Matuwana D; Kearney CJ; Rotello VM
    Adv Healthc Mater; 2022 Nov; 11(21):e2201060. PubMed ID: 36049222
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tailoring Nanoparticle-Biofilm Interactions to Increase the Efficacy of Antimicrobial Agents Against
    Fulaz S; Devlin H; Vitale S; Quinn L; O'Gara JP; Casey E
    Int J Nanomedicine; 2020; 15():4779-4791. PubMed ID: 32753866
    [TBL] [Abstract][Full Text] [Related]  

  • 16. pH-Responsive Fluorescent Polymer-Drug System for Real-Time Detection and
    Dai X; Xu Q; Yang L; Ma J; Gao F
    ACS Biomater Sci Eng; 2022 Feb; 8(2):893-902. PubMed ID: 35012306
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biofilm interfacial acidity evaluation by pH-Responsive luminescent nanoparticle films.
    Merkl P; Aschtgen MS; Henriques-Normark B; Sotiriou GA
    Biosens Bioelectron; 2021 Jan; 171():112732. PubMed ID: 33120233
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improved effect of amikacin-loaded poly(D,L-lactide-co-glycolide) nanoparticles against planktonic and biofilm cells of Pseudomonas aeruginosa.
    Sabaeifard P; Abdi-Ali A; Gamazo C; Irache JM; Soudi MR
    J Med Microbiol; 2017 Mar; 66(2):137-148. PubMed ID: 28260589
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A pH/H
    Zhao Y; Zhu Y; Yang G; Xia L; Yu F; Chen C; Zhang L; Cao H
    J Mater Chem B; 2021 Jun; 9(25):5076-5082. PubMed ID: 34120155
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evolving biofilm inhibition and eradication in clinical settings through plant-based antibiofilm agents.
    Silva E; Teixeira JA; Pereira MO; Rocha CMR; Sousa AM
    Phytomedicine; 2023 Oct; 119():154973. PubMed ID: 37499434
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.