These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
8. Increased gamma- and decreased delta-oscillations in a mouse deficient for a potassium channel expressed in fast-spiking interneurons. Joho RH; Ho CS; Marks GA J Neurophysiol; 1999 Oct; 82(4):1855-64. PubMed ID: 10515974 [TBL] [Abstract][Full Text] [Related]
9. Changes in the Prefrontal Glutamatergic and Parvalbumin Systems of Mice Exposed to Unpredictable Chronic Stress. Shepard R; Coutellier L Mol Neurobiol; 2018 Mar; 55(3):2591-2602. PubMed ID: 28421533 [TBL] [Abstract][Full Text] [Related]
10. Quantitative analysis of neurons with Kv3 potassium channel subunits, Kv3.1b and Kv3.2, in macaque primary visual cortex. Constantinople CM; Disney AA; Maffie J; Rudy B; Hawken MJ J Comp Neurol; 2009 Oct; 516(4):291-311. PubMed ID: 19634181 [TBL] [Abstract][Full Text] [Related]
11. Kv3.1-Kv3.2 channels underlie a high-voltage-activating component of the delayed rectifier K+ current in projecting neurons from the globus pallidus. Hernández-Pineda R; Chow A; Amarillo Y; Moreno H; Saganich M; Vega-Saenz de Miera EC; Hernández-Cruz A; Rudy B J Neurophysiol; 1999 Sep; 82(3):1512-28. PubMed ID: 10482766 [TBL] [Abstract][Full Text] [Related]
12. Differential expression of Kv3.1b and Kv3.2 potassium channel subunits in interneurons of the basolateral amygdala. McDonald AJ; Mascagni F Neuroscience; 2006; 138(2):537-47. PubMed ID: 16413129 [TBL] [Abstract][Full Text] [Related]
13. Impaired fast-spiking, suppressed cortical inhibition, and increased susceptibility to seizures in mice lacking Kv3.2 K+ channel proteins. Lau D; Vega-Saenz de Miera EC; Contreras D; Ozaita A; Harvey M; Chow A; Noebels JL; Paylor R; Morgan JI; Leonard CS; Rudy B J Neurosci; 2000 Dec; 20(24):9071-85. PubMed ID: 11124984 [TBL] [Abstract][Full Text] [Related]
14. Functional and molecular differences between voltage-gated K+ channels of fast-spiking interneurons and pyramidal neurons of rat hippocampus. Martina M; Schultz JH; Ehmke H; Monyer H; Jonas P J Neurosci; 1998 Oct; 18(20):8111-25. PubMed ID: 9763458 [TBL] [Abstract][Full Text] [Related]
15. Function of specific K(+) channels in sustained high-frequency firing of fast-spiking neocortical interneurons. Erisir A; Lau D; Rudy B; Leonard CS J Neurophysiol; 1999 Nov; 82(5):2476-89. PubMed ID: 10561420 [TBL] [Abstract][Full Text] [Related]
16. Kv3.1-containing K(+) channels are reduced in untreated schizophrenia and normalized with antipsychotic drugs. Yanagi M; Joho RH; Southcott SA; Shukla AA; Ghose S; Tamminga CA Mol Psychiatry; 2014 May; 19(5):573-9. PubMed ID: 23628987 [TBL] [Abstract][Full Text] [Related]
17. K Boddum K; Hougaard C; Xiao-Ying Lin J; von Schoubye NL; Jensen HS; Grunnet M; Jespersen T Neuropharmacology; 2017 May; 118():102-112. PubMed ID: 28242439 [TBL] [Abstract][Full Text] [Related]
18. Prefrontal parvalbumin cells are sensitive to stress and mediate anxiety-related behaviors in female mice. Page CE; Shepard R; Heslin K; Coutellier L Sci Rep; 2019 Dec; 9(1):19772. PubMed ID: 31875035 [TBL] [Abstract][Full Text] [Related]
19. Kv3 potassium conductance is necessary and kinetically optimized for high-frequency action potential generation in hippocampal interneurons. Lien CC; Jonas P J Neurosci; 2003 Mar; 23(6):2058-68. PubMed ID: 12657664 [TBL] [Abstract][Full Text] [Related]
20. Sensitivity of the prefrontal GABAergic system to chronic stress in male and female mice: Relevance for sex differences in stress-related disorders. Shepard R; Page CE; Coutellier L Neuroscience; 2016 Sep; 332():1-12. PubMed ID: 27365172 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]