These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
127 related articles for article (PubMed ID: 38158066)
1. Effects of wheat protein on hot-extrusion 3D-printing performance and the release behaviours of caffeic acid-loaded wheat starch. Cui XR; Wang YS; Chen Y; Mu HY; Chen HH Int J Biol Macromol; 2024 Feb; 258(Pt 2):129097. PubMed ID: 38158066 [TBL] [Abstract][Full Text] [Related]
2. Insights into the relationship between structure and rheological properties of starch gels in hot-extrusion 3D printing. Zeng X; Chen H; Chen L; Zheng B Food Chem; 2021 Apr; 342():128362. PubMed ID: 33077283 [TBL] [Abstract][Full Text] [Related]
3. Pre-dry heat treatment alters the structure and ultimate in vitro digestibility of wheat starch-lipids complex in hot-extrusion 3D printing. Zheng B; Qiu Z; Liu Z; Chen L Carbohydr Polym; 2024 Jun; 334():122026. PubMed ID: 38553225 [TBL] [Abstract][Full Text] [Related]
4. Effect of stearic acid on the microstructural, rheological and 3D printing characteristics of rice starch. Liu Z; Yang J; Shi Z; Chen L; Zheng B Int J Biol Macromol; 2021 Oct; 189():590-596. PubMed ID: 34454998 [TBL] [Abstract][Full Text] [Related]
5. Physicochemical properties, structural properties and gels 3D printing properties of wheat starch. Shi S; Wen J; Geng H; Zhan X; Liu Y Int J Biol Macromol; 2024 Mar; 261(Pt 2):129885. PubMed ID: 38309385 [TBL] [Abstract][Full Text] [Related]
6. 3D printing performance of gels from wheat starch, flour and whole meal. Zheng L; Liu J; Liu R; Xing Y; Jiang H Food Chem; 2021 Sep; 356():129546. PubMed ID: 33812193 [TBL] [Abstract][Full Text] [Related]
7. Effect of ferulic acid incorporation on structural, rheological, and digestive properties of hot-extrusion 3D-printed rice starch. Li Z; Liang J; Lu L; Liu L; Wang L Int J Biol Macromol; 2024 May; 266(Pt 2):131279. PubMed ID: 38561115 [TBL] [Abstract][Full Text] [Related]
8. Effects of starch-fatty acid complexes with different fatty acid chain lengths and degrees of saturation on the rheological and 3D printing properties of corn starch. Cheng Y; Gao W; Kang X; Wang J; Yu B; Guo L; Zhao M; Yuan C; Cui B Food Chem; 2024 Mar; 436():137718. PubMed ID: 37844512 [TBL] [Abstract][Full Text] [Related]
9. Starch concentration is an important factor for controlling its digestibility during hot-extrusion 3D printing. Zhang Z; Zheng B; Tang Y; Chen L Food Chem; 2022 Jun; 379():132180. PubMed ID: 35065499 [TBL] [Abstract][Full Text] [Related]
10. Controlling the rheological properties of wheat starch gels using Lepidium perfoliatum seed gum in steady and dynamic shear. Yousefi AR; Ako K Int J Biol Macromol; 2020 Jan; 143():928-936. PubMed ID: 31739033 [TBL] [Abstract][Full Text] [Related]
11. Effect of 3D printing accuracy by wheat starch gel combined with canola oil. Bao Y; Yang T; Jiang H Int J Biol Macromol; 2024 Dec; 282(Pt 1):136614. PubMed ID: 39419147 [TBL] [Abstract][Full Text] [Related]
12. Viscoelastic and textural properties of canary seed starch gels in comparison with wheat starch gel. Irani M; Razavi SMA; Abdel-Aal EM; Hucl P; Patterson CA Int J Biol Macromol; 2019 Mar; 124():270-281. PubMed ID: 30481532 [TBL] [Abstract][Full Text] [Related]
13. Effect of dielectric barrier discharge (DBD) plasma treatment on physicochemical and 3D printing properties of wheat starch. Ma S; Ma T; Tsuchikawa S; Inagaki T; Wang H; Jiang H Int J Biol Macromol; 2024 Jun; 269(Pt 2):132159. PubMed ID: 38719018 [TBL] [Abstract][Full Text] [Related]
14. Effect of plasma-activated water on the quality of wheat starch gel-forming 3D printed samples. Ma S; Zhang M; Wang X; Yang Y; He L; Deng J; Jiang H Int J Biol Macromol; 2024 Aug; 274(Pt 1):133552. PubMed ID: 39025747 [TBL] [Abstract][Full Text] [Related]
15. Effect of Ca Li G; Zhan J; Hu Z; Huang J; Xu E; Yuan C; Chen J; Yao Q; Hu Y J Sci Food Agric; 2023 Sep; 103(12):5927-5937. PubMed ID: 37139663 [TBL] [Abstract][Full Text] [Related]
16. Investigation of the mechanism of different 3D printing performance of starch and whole flour gels from tuber crops. Ji S; Zeng Q; Xu M; Li Y; Xu T; Zhong Y; Liu Y; Wang F; Lu B Int J Biol Macromol; 2023 Jun; 241():124448. PubMed ID: 37060974 [TBL] [Abstract][Full Text] [Related]
17. Investigation of the mechanism of gelatin to enhance 3D printing accuracy of corn starch gel: From perspective of phase morphological changes. Cheng Y; Chen Y; Gao W; Kang X; Sui J; Yu B; Guo L; Zhao M; Yuan C; Cui B Int J Biol Macromol; 2024 Jan; 254(Pt 2):127323. PubMed ID: 37879577 [TBL] [Abstract][Full Text] [Related]
18. Effect of starch-catechin interaction on regulation of starch digestibility during hot-extrusion 3D printing: Structural analysis and simulation study. Zheng B; Liu Z; Chen L; Qiu Z; Li T Food Chem; 2022 Nov; 393():133394. PubMed ID: 35688087 [TBL] [Abstract][Full Text] [Related]
19. 3D-printing of oxidized starch-based hydrogels with superior hydration properties. Qiu Z; Zheng B; Xu J; Chen J; Chen L Carbohydr Polym; 2022 Sep; 292():119686. PubMed ID: 35725213 [TBL] [Abstract][Full Text] [Related]
20. Lutein encapsulation into dual-layered starch/zein gels using 3D food printing: Improved storage stability and in vitro bioaccessibility. Ahmadzadeh S; Ubeyitogullari A Int J Biol Macromol; 2024 May; 266(Pt 2):131305. PubMed ID: 38569990 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]