BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 38158104)

  • 1. Paracrine cross-talk between human adipose tissue-derived endothelial cells and perivascular cells accelerates the endothelialization of an electrospun ionomeric polyurethane scaffold.
    Antonyshyn JA; MacQuarrie KD; McFadden MJ; Gramolini AO; Hofer SOP; Santerre JP
    Acta Biomater; 2024 Feb; 175():214-225. PubMed ID: 38158104
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis and characterization of electrospun nanofibrous tissue engineering scaffolds generated from in situ polymerization of ionomeric polyurethane composites.
    Chan JP; Battiston KG; Santerre JP
    Acta Biomater; 2019 Sep; 96():161-174. PubMed ID: 31254683
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biomimetic modification of polyurethane-based nanofibrous vascular grafts: A promising approach towards stable endothelial lining.
    Davoudi P; Assadpour S; Derakhshan MA; Ai J; Solouk A; Ghanbari H
    Mater Sci Eng C Mater Biol Appl; 2017 Nov; 80():213-221. PubMed ID: 28866159
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stiffness of the aligned fibers affects structural and functional integrity of the oriented endothelial cells.
    Yi B; Shen Y; Tang H; Wang X; Zhang Y
    Acta Biomater; 2020 May; 108():237-249. PubMed ID: 32205213
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Decellularized porcine coronary artery with adipose stem cells for vascular tissue engineering.
    Lin CH; Hsia K; Tsai CH; Ma H; Lu JH; Tsay RY
    Biomed Mater; 2019 Jun; 14(4):045014. PubMed ID: 31108479
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Performance of a multilayered small-diameter vascular scaffold dual-loaded with VEGF and PDGF.
    Han F; Jia X; Dai D; Yang X; Zhao J; Zhao Y; Fan Y; Yuan X
    Biomaterials; 2013 Oct; 34(30):7302-13. PubMed ID: 23830580
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Advancing tissue-engineered vascular grafts via their endothelialization and mechanical conditioning.
    Antonyshyn JA; D'''''Costa KA; Santerre JP
    J Cardiovasc Surg (Torino); 2020 Oct; 61(5):555-576. PubMed ID: 32909708
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fabrication of PU/PEGMA crosslinked hybrid scaffolds by in situ UV photopolymerization favoring human endothelial cells growth for vascular tissue engineering.
    Wang H; Feng Y; An B; Zhang W; Sun M; Fang Z; Yuan W; Khan M
    J Mater Sci Mater Med; 2012 Jun; 23(6):1499-510. PubMed ID: 22430593
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fabrication of small-diameter vascular scaffolds by heparin-bonded P(LLA-CL) composite nanofibers to improve graft patency.
    Wang S; Mo XM; Jiang BJ; Gao CJ; Wang HS; Zhuang YG; Qiu LJ
    Int J Nanomedicine; 2013; 8():2131-9. PubMed ID: 23776333
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparative gene expression profiling of human primary endotheliocytes cultivated on polyurethane-based electrospun 3D matrices and natural decellularized vein.
    Chernonosova VS; Laktionov PP; Murashov IS; Karpenko AA; Laktionov PP
    Biomed Mater; 2020 Jun; 15(4):045012. PubMed ID: 32143210
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Micropatterning of three-dimensional electrospun polyurethane vascular grafts.
    Uttayarat P; Perets A; Li M; Pimton P; Stachelek SJ; Alferiev I; Composto RJ; Levy RJ; Lelkes PI
    Acta Biomater; 2010 Nov; 6(11):4229-37. PubMed ID: 20601235
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrospun aligned nanofibrous scaffold of carbon nanotubes-polyurethane composite for endothelial cells.
    Han Z; Kong H; Meng J; Wang C; Xie S; Xu H
    J Nanosci Nanotechnol; 2009 Feb; 9(2):1400-2. PubMed ID: 19441533
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Construction of enzyme-laden vascular scaffolds based on hyaluronic acid oligosaccharides-modified collagen nanofibers for antithrombosis and in-situ endothelialization of tissue-engineered blood vessels.
    Jia W; Liu L; Li M; Zhou Y; Zhou H; Weng H; Gu G; Xiao M; Chen Z
    Acta Biomater; 2022 Nov; 153():287-298. PubMed ID: 36155095
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrospun biodegradable elastic polyurethane scaffolds with dipyridamole release for small diameter vascular grafts.
    Punnakitikashem P; Truong D; Menon JU; Nguyen KT; Hong Y
    Acta Biomater; 2014 Nov; 10(11):4618-4628. PubMed ID: 25110284
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Vascular tissue engineering from human adipose tissue: fundamental phenotype of its resident microvascular endothelial cells and stromal/stem cells.
    Antonyshyn JA; McFadden MJ; Gramolini AO; Hofer SOP; Santerre JP
    Biomater Biosyst; 2022 Jun; 6():100049. PubMed ID: 36824164
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Autologous endothelialized small-caliber vascular grafts engineered from blood-derived induced pluripotent stem cells.
    Generali M; Casanova EA; Kehl D; Wanner D; Hoerstrup SP; Cinelli P; Weber B
    Acta Biomater; 2019 Oct; 97():333-343. PubMed ID: 31344511
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A simply prepared small-diameter artificial blood vessel that promotes in situ endothelialization.
    Guo HF; Dai WW; Qian DH; Qin ZX; Lei Y; Hou XY; Wen C
    Acta Biomater; 2017 May; 54():107-116. PubMed ID: 28238915
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhancement of in vivo endothelialization of tissue-engineered vascular grafts by granulocyte colony-stimulating factor.
    Cho SW; Lim JE; Chu HS; Hyun HJ; Choi CY; Hwang KC; Yoo KJ; Kim DI; Kim BS
    J Biomed Mater Res A; 2006 Feb; 76(2):252-63. PubMed ID: 16265638
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Surface modification and endothelialization of polyurethane for vascular tissue engineering applications: a review.
    Adipurnama I; Yang MC; Ciach T; Butruk-Raszeja B
    Biomater Sci; 2016 Dec; 5(1):22-37. PubMed ID: 27942617
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The endothelialization process of a fibrous polyurethane microvascular prosthesis after implantation in the abdominal aorta of the rat. A scanning electron microscopic study.
    Hess F; Jerusalem C; Braun B
    J Cardiovasc Surg (Torino); 1983; 24(5):516-24. PubMed ID: 6654966
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.