BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

22 related articles for article (PubMed ID: 38158117)

  • 1. Quantifying Correlations Between Allosteric Sites in Thermodynamic Ensembles.
    McClendon CL; Friedland G; Mobley DL; Amirkhani H; Jacobson MP
    J Chem Theory Comput; 2009 Sep; 5(9):2486-2502. PubMed ID: 20161451
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamically driven correlations in elastic net models reveal sequence of events and causality in proteins.
    Erkip A; Erman B
    Proteins; 2024 Apr; ():. PubMed ID: 38687146
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Potential allosteric sites captured in glycolytic enzymes via residue-based network models: Phosphofructokinase, glyceraldehyde-3-phosphate dehydrogenase and pyruvate kinase.
    Celebi M; Inan T; Kurkcuoglu O; Akten ED
    Biophys Chem; 2022 Jan; 280():106701. PubMed ID: 34736071
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Altered Dynamics of S. aureus Phosphofructokinase via Bond Restraints at Two Distinct Allosteric Binding Sites.
    Celebi M; Akten ED
    J Mol Biol; 2022 Sep; 434(17):167646. PubMed ID: 35623412
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of the structures of wild-type and a N313T mutant of Escherichia coli glyceraldehyde 3-phosphate dehydrogenases: implication for NAD binding and cooperativity.
    Duée E; Olivier-Deyris L; Fanchon E; Corbier C; Branlant G; Dideberg O
    J Mol Biol; 1996 Apr; 257(4):814-38. PubMed ID: 8636984
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An unexpected phosphate binding site in glyceraldehyde 3-phosphate dehydrogenase: crystal structures of apo, holo and ternary complex of Cryptosporidium parvum enzyme.
    Cook WJ; Senkovich O; Chattopadhyay D
    BMC Struct Biol; 2009 Feb; 9():9. PubMed ID: 19243605
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Crystal structure of glyceraldehyde-3-phosphate dehydrogenase 1 from methicillin-resistant Staphylococcus aureus MRSA252 provides novel insights into substrate binding and catalytic mechanism.
    Mukherjee S; Dutta D; Saha B; Das AK
    J Mol Biol; 2010 Sep; 401(5):949-68. PubMed ID: 20620151
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Protein thiol modification of glyceraldehyde-3-phosphate dehydrogenase as a target for nitric oxide signaling.
    Brüne B; Lapetina EG
    Genet Eng (N Y); 1995; 17():149-64. PubMed ID: 7540026
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Studying allosteric regulation in metal sensor proteins using computational methods.
    Chakravorty DK; Merz KM
    Adv Protein Chem Struct Biol; 2014; 96():181-218. PubMed ID: 25443958
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Study of the properties of phosphorylating D-glyceraldehyde-3-phosphate dehydrogenase.
    Nagradova NK
    Biochemistry (Mosc); 2001 Oct; 66(10):1067-76. PubMed ID: 11736628
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tunnel-like region observed as a potential allosteric site in Staphylococcus aureus Glyceraldehyde-3-phosphate dehydrogenase.
    Guner-Yılmaz OZ; Kurkcuoglu O; Akten ED
    Arch Biochem Biophys; 2024 Feb; 752():109875. PubMed ID: 38158117
    [TBL] [Abstract][Full Text] [Related]  

  • 12.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 13.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 14.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 15.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 16.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 17.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 18.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 19.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 2.