BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 38158424)

  • 21. Validation study of a new semi-automated software program for CT body composition analysis.
    Takahashi N; Sugimoto M; Psutka SP; Chen B; Moynagh MR; Carter RE
    Abdom Radiol (NY); 2017 Sep; 42(9):2369-2375. PubMed ID: 28389787
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Automated Liver Fat Quantification at Nonenhanced Abdominal CT for Population-based Steatosis Assessment.
    Graffy PM; Sandfort V; Summers RM; Pickhardt PJ
    Radiology; 2019 Nov; 293(2):334-342. PubMed ID: 31526254
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Automated segmentation and quantification of aortic calcification at abdominal CT: application of a deep learning-based algorithm to a longitudinal screening cohort.
    Graffy PM; Liu J; O'Connor S; Summers RM; Pickhardt PJ
    Abdom Radiol (NY); 2019 Aug; 44(8):2921-2928. PubMed ID: 30976827
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Correlation of fatty liver and abdominal fat distribution using a simple fat computed tomography protocol.
    Jang S; Lee CH; Choi KM; Lee J; Choi JW; Kim KA; Park CM
    World J Gastroenterol; 2011 Jul; 17(28):3335-41. PubMed ID: 21876622
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Evaluation of an artificial intelligence coronary artery calcium scoring model from computed tomography.
    Ihdayhid AR; Lan NSR; Williams M; Newby D; Flack J; Kwok S; Joyner J; Gera S; Dembo L; Adler B; Ko B; Chow BJW; Dwivedi G
    Eur Radiol; 2023 Jan; 33(1):321-329. PubMed ID: 35986771
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Chest Fat Quantification via CT Based on Standardized Anatomy Space in Adult Lung Transplant Candidates.
    Tong Y; Udupa JK; Torigian DA; Odhner D; Wu C; Pednekar G; Palmer S; Rozenshtein A; Shirk MA; Newell JD; Porteous M; Diamond JM; Christie JD; Lederer DJ
    PLoS One; 2017; 12(1):e0168932. PubMed ID: 28046024
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Deep learning-based muscle segmentation and quantification at abdominal CT: application to a longitudinal adult screening cohort for sarcopenia assessment.
    Graffy PM; Liu J; Pickhardt PJ; Burns JE; Yao J; Summers RM
    Br J Radiol; 2019 Aug; 92(1100):20190327. PubMed ID: 31199670
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Evaluating body composition by combining quantitative spectral detector computed tomography and deep learning-based image segmentation.
    Zopfs D; Bousabarah K; Lennartz S; Santos DPD; Schlaak M; Theurich S; Reimer RP; Maintz D; Haneder S; Große Hokamp N
    Eur J Radiol; 2020 Sep; 130():109153. PubMed ID: 32717577
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Fully Automated Deep Learning Tool for Sarcopenia Assessment on CT: L1 Versus L3 Vertebral Level Muscle Measurements for Opportunistic Prediction of Adverse Clinical Outcomes.
    Pickhardt PJ; Perez AA; Garrett JW; Graffy PM; Zea R; Summers RM
    AJR Am J Roentgenol; 2022 Jan; 218(1):124-131. PubMed ID: 34406056
    [No Abstract]   [Full Text] [Related]  

  • 30. Automated assessment of longitudinal biomarker changes at abdominal CT: correlation with subsequent cardiovascular events in an asymptomatic adult screening cohort.
    Graffy PM; Summers RM; Perez AA; Sandfort V; Zea R; Pickhardt PJ
    Abdom Radiol (NY); 2021 Jun; 46(6):2976-2984. PubMed ID: 33388896
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Evaluation of fully automated commercial software for Agatston calcium scoring on non-ECG-gated low-dose chest CT with different slice thickness.
    Kang HW; Ahn WJ; Jeong JH; Suh YJ; Yang DH; Choi H; Hwang SH; Yong HS; Oh YW; Kang EY; Kim C
    Eur Radiol; 2023 Mar; 33(3):1973-1981. PubMed ID: 36152039
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Quantification of fat and skeletal muscle tissue at abdominal computed tomography: associations between single-slice measurements and total compartment volumes.
    Faron A; Luetkens JA; Schmeel FC; Kuetting DLR; Thomas D; Sprinkart AM
    Abdom Radiol (NY); 2019 May; 44(5):1907-1916. PubMed ID: 30694368
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Voxel-wise body composition analysis using image registration of a three-slice CT imaging protocol: methodology and proof-of-concept studies.
    Ahmad N; Dahlberg H; Jönsson H; Tarai S; Guggilla RK; Strand R; Lundström E; Bergström G; Ahlström H; Kullberg J
    Biomed Eng Online; 2024 Apr; 23(1):42. PubMed ID: 38614974
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Automated analysis of liver fat, muscle and adipose tissue distribution from CT suitable for large-scale studies.
    Kullberg J; Hedström A; Brandberg J; Strand R; Johansson L; Bergström G; Ahlström H
    Sci Rep; 2017 Sep; 7(1):10425. PubMed ID: 28874743
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Significance of Acquisition Parameters for Adipose Tissue Segmentation on CT Images.
    Troschel AS; Troschel FM; Fuchs G; Marquardt JP; Ackman JB; Yang K; Fintelmann FJ
    AJR Am J Roentgenol; 2021 Jul; 217(1):177-185. PubMed ID: 33729886
    [No Abstract]   [Full Text] [Related]  

  • 36. Artificial intelligence to assess body composition on routine abdominal CT scans and predict mortality in pancreatic cancer- A recipe for your local application.
    Hsu TH; Schawkat K; Berkowitz SJ; Wei JL; Makoyeva A; Legare K; DeCicco C; Paez SN; Wu JSH; Szolovits P; Kikinis R; Moser AJ; Goehler A
    Eur J Radiol; 2021 Sep; 142():109834. PubMed ID: 34252866
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Liver fat is reproducibly measured using computed tomography in the Framingham Heart Study.
    Speliotes EK; Massaro JM; Hoffmann U; Foster MC; Sahani DV; Hirschhorn JN; O'Donnell CJ; Fox CS
    J Gastroenterol Hepatol; 2008 Jun; 23(6):894-9. PubMed ID: 18565021
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Relationship between dual-energy X-ray absorptiometry volumetric assessment and X-ray computed tomography-derived single-slice measurement of visceral fat.
    Xia Y; Ergun DL; Wacker WK; Wang X; Davis CE; Kaul S
    J Clin Densitom; 2014; 17(1):78-83. PubMed ID: 23603054
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Deep neural network for automatic volumetric segmentation of whole-body CT images for body composition assessment.
    Lee YS; Hong N; Witanto JN; Choi YR; Park J; Decazes P; Eude F; Kim CO; Chang Kim H; Goo JM; Rhee Y; Yoon SH
    Clin Nutr; 2021 Aug; 40(8):5038-5046. PubMed ID: 34365038
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Evaluation of automated computed tomography segmentation to assess body composition and mortality associations in cancer patients.
    Cespedes Feliciano EM; Popuri K; Cobzas D; Baracos VE; Beg MF; Khan AD; Ma C; Chow V; Prado CM; Xiao J; Liu V; Chen WY; Meyerhardt J; Albers KB; Caan BJ
    J Cachexia Sarcopenia Muscle; 2020 Oct; 11(5):1258-1269. PubMed ID: 32314543
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.