These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
151 related articles for article (PubMed ID: 38158531)
1. Advances in phase change materials and nanomaterials for applications in thermal energy storage. Kumar R; Thakur AK; Gupta LR; Gehlot A; Sikarwar VS Environ Sci Pollut Res Int; 2024 Jan; 31(5):6649-6677. PubMed ID: 38158531 [TBL] [Abstract][Full Text] [Related]
2. A Review of Thermal Property Enhancements of Low-Temperature Nano-Enhanced Phase Change Materials. Williams JD; Peterson GP Nanomaterials (Basel); 2021 Sep; 11(10):. PubMed ID: 34685017 [TBL] [Abstract][Full Text] [Related]
3. Thermal Energy Storage Using a Hybrid Composite Based on Technical-Grade Paraffin-AP25 Wax as a Phase Change Material. Nabwey HA; Tony MA Nanomaterials (Basel); 2023 Sep; 13(19):. PubMed ID: 37836276 [TBL] [Abstract][Full Text] [Related]
4. Effect of Ball-Milled Steatite Powder on the Latent Heat Energy Storage Properties and Heat Charging-Discharging Periods of Paraffin Wax as Phase Change Material. Kannaiyan S; Huang SJ; Rathnaraj D; Srinivasan SA Micromachines (Basel); 2022 Sep; 13(9):. PubMed ID: 36144078 [TBL] [Abstract][Full Text] [Related]
5. Experimental investigation of an indirect solar dryer with PCM-integrated solar collector as a thermal energy storage medium. Bareen A; Dash S; Kalita P; Dash KK Environ Sci Pollut Res Int; 2024 Mar; 31(12):18209-18225. PubMed ID: 37041357 [TBL] [Abstract][Full Text] [Related]
6. Analysis of energy storage materials for developments in solar cookers. Khatri R; Goyal R; Sharma RK F1000Res; 2022; 11():1292. PubMed ID: 37224322 [TBL] [Abstract][Full Text] [Related]
7. Thermal Energy Storage and Heat Transfer of Nano-Enhanced Phase Change Material (NePCM) in a Shell and Tube Thermal Energy Storage (TES) Unit with a Partial Layer of Eccentric Copper Foam. Ghalambaz M; Mehryan SAM; Ayoubloo KA; Hajjar A; El Kadri M; Younis O; Pour MS; Hulme-Smith C Molecules; 2021 Mar; 26(5):. PubMed ID: 33803388 [TBL] [Abstract][Full Text] [Related]
8. Enhancing the Thermal Performance of a Stearate Phase Change Material with Graphene Nanoplatelets and MgO Nanoparticles. Prado JI; Lugo L ACS Appl Mater Interfaces; 2020 Sep; 12(35):39108-39117. PubMed ID: 32805850 [TBL] [Abstract][Full Text] [Related]
9. Phase-Change Materials in Hydronic Heating and Cooling Systems: A Literature Review. Koželj R; Osterman E; Leonforte F; Del Pero C; Miglioli A; Zavrl E; Stropnik R; Aste N; Stritih U Materials (Basel); 2020 Jul; 13(13):. PubMed ID: 32635169 [TBL] [Abstract][Full Text] [Related]
10. Thermo-kinetic behaviour of green synthesized nanomaterial enhanced organic phase change material: Model fitting approach. Kalidasan B; Pandey AK; Aljafari B; Chinnasamy S; Kareri T; Rahman S J Environ Manage; 2023 Dec; 348():119439. PubMed ID: 37890400 [TBL] [Abstract][Full Text] [Related]
11. Evaluation of carbonized waste tire for development of novel shape stabilized composite phase change material for thermal energy storage. Sarı A; Saleh TA; Hekimoğlu G; Tuzen M; Tyagi VV Waste Manag; 2020 Feb; 103():352-360. PubMed ID: 31923842 [TBL] [Abstract][Full Text] [Related]
12. Experimental Investigation of a Novel Solar Energy Storage Heating Radiator with Phase Change Material. Duan J; Liu Y; Zeng L; Wang Y; Su Q; Wang J ACS Omega; 2021 Jun; 6(21):13601-13610. PubMed ID: 34095654 [TBL] [Abstract][Full Text] [Related]
13. Study of the Phase-Change Thermal-Storage Characteristics of a Solar Collector. Deng Y; Xu J; Li Y; Zhang Y; Kuang C Materials (Basel); 2022 Oct; 15(21):. PubMed ID: 36363089 [TBL] [Abstract][Full Text] [Related]
14. Copper Sulfide Nanodisk-Doped Solid-Solid Phase Change Materials for Full Spectrum Solar-Thermal Energy Harvesting and Storage. Xiong F; Yuan K; Aftab W; Jiang H; Shi J; Liang Z; Gao S; Zhong R; Wang H; Zou R ACS Appl Mater Interfaces; 2021 Jan; 13(1):1377-1385. PubMed ID: 33351579 [TBL] [Abstract][Full Text] [Related]
15. A critical assessment of nanoparticles enhanced phase change materials (NePCMs) for latent heat energy storage applications. Amidu MA; Ali M; Alkaabi AK; Addad Y Sci Rep; 2023 May; 13(1):7829. PubMed ID: 37188733 [TBL] [Abstract][Full Text] [Related]
16. Form-Stable Composite Phase Change Materials Based on Porous Copper-Graphene Heterostructures for Solar Thermal Energy Conversion and Storage. Chang C; Li B; Fu B; Yang X; Ji Y Polymers (Basel); 2023 Dec; 15(24):. PubMed ID: 38139974 [TBL] [Abstract][Full Text] [Related]
17. Spatiotemporal Utilization of Latent Heat in Erythritol-based Phase Change Materials as Solar Thermal Fuels. Chen J; Kou Y; Zhang S; Zhang X; Liu H; Yan H; Shi Q Angew Chem Int Ed Engl; 2024 Apr; 63(16):e202400759. PubMed ID: 38375575 [TBL] [Abstract][Full Text] [Related]
18. Nanoparticles to Enhance Melting Performance of Phase Change Materials for Thermal Energy Storage. Han Y; Yang Y; Mallick T; Wen C Nanomaterials (Basel); 2022 May; 12(11):. PubMed ID: 35683720 [TBL] [Abstract][Full Text] [Related]
19. Oriented High Thermal Conductivity Solid-Solid Phase Change Materials for Mid-Temperature Solar-Thermal Energy Storage. Dai Z; Gao Y; Wang C; Wu D; Jiang Z; She X; Ding Y; Zhang X; Zhao D ACS Appl Mater Interfaces; 2023 Jun; 15(22):26863-26871. PubMed ID: 37230959 [TBL] [Abstract][Full Text] [Related]
20. Experimental study of the thermal performance of heat storage-integrated solar receiver for parabolic dish collectors. Vishnu SK; Senthil R Environ Sci Pollut Res Int; 2023 Jun; 30(30):76044-76059. PubMed ID: 37233932 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]