These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 38158551)

  • 41. Vocal tract area functions from magnetic resonance imaging.
    Story BH; Titze IR; Hoffman EA
    J Acoust Soc Am; 1996 Jul; 100(1):537-54. PubMed ID: 8675847
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Role of vocal tract morphology in speech development: perceptual targets and sensorimotor maps for synthesized French vowels from birth to adulthood.
    Ménard L; Schwartz JL; Boë LJ
    J Speech Lang Hear Res; 2004 Oct; 47(5):1059-80. PubMed ID: 15603462
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Vocal tract resonance characteristics of adults with obstructive sleep apnea.
    Robb MP; Yates J; Morgan EJ
    Acta Otolaryngol; 1997 Sep; 117(5):760-3. PubMed ID: 9349877
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Vowel acoustic space development in children: a synthesis of acoustic and anatomic data.
    Vorperian HK; Kent RD
    J Speech Lang Hear Res; 2007 Dec; 50(6):1510-45. PubMed ID: 18055771
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A magnetic resonance imaging-based articulatory and acoustic study of "retroflex" and "bunched" American English /r/.
    Zhou X; Espy-Wilson CY; Boyce S; Tiede M; Holland C; Choe A
    J Acoust Soc Am; 2008 Jun; 123(6):4466-81. PubMed ID: 18537397
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Effect of vocal effort on spectral properties of vowels.
    Liénard JS; Di Benedetto MG
    J Acoust Soc Am; 1999 Jul; 106(1):411-22. PubMed ID: 10420631
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A study of acoustic-to-articulatory inversion of speech by analysis-by-synthesis using chain matrices and the Maeda articulatory model.
    Panchapagesan S; Alwan A
    J Acoust Soc Am; 2011 Apr; 129(4):2144-62. PubMed ID: 21476670
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Distance vs time. Acoustic and articulatory consequences of reduced vowel duration in Polish.
    Strycharczuk P; Ćavar M; Coretta S
    J Acoust Soc Am; 2021 Jul; 150(1):592. PubMed ID: 34340503
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Speech enhancement for listeners with hearing loss based on a model for vowel coding in the auditory midbrain.
    Rao A; Carney LH
    IEEE Trans Biomed Eng; 2014 Jul; 61(7):2081-91. PubMed ID: 24686228
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Perceiving vowels in the presence of another sound: constraints on formant perception.
    Darwin CJ
    J Acoust Soc Am; 1984 Dec; 76(6):1636-47. PubMed ID: 6520301
    [TBL] [Abstract][Full Text] [Related]  

  • 51. [Influences of acoustic coupling between source and vocal tract of the Fo of oral vowels. Consequence for the study of intrinsic characteristics].
    Guérin B; Boë LJ
    Phonetica; 1980; 37(3):169-92. PubMed ID: 7422715
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A statistical, formant-pattern model for segregating vowel type and vocal-tract length in developmental formant data.
    Turner RE; Walters TC; Monaghan JJ; Patterson RD
    J Acoust Soc Am; 2009 Apr; 125(4):2374-86. PubMed ID: 19354411
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Effects of speaking rate and vowel length on formant frequency displacement in Japanese.
    Hirata Y; Tsukada K
    Phonetica; 2009; 66(3):129-49. PubMed ID: 19776664
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A modeling investigation of articulatory variability and acoustic stability during American English /r/ production.
    Nieto-Castanon A; Guenther FH; Perkell JS; Curtin HD
    J Acoust Soc Am; 2005 May; 117(5):3196-212. PubMed ID: 15957787
    [TBL] [Abstract][Full Text] [Related]  

  • 55. New Evidence That Nonlinear Source-Filter Coupling Affects Harmonic Intensity and fo Stability During Instances of Harmonics Crossing Formants.
    Maxfield L; Palaparthi A; Titze I
    J Voice; 2017 Mar; 31(2):149-156. PubMed ID: 27501922
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Effect of speaking rate and contrastive stress on formant dynamics and vowel perception.
    Pitermann M
    J Acoust Soc Am; 2000 Jun; 107(6):3425-37. PubMed ID: 10875387
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Static and dynamic formant scaling conveys body size and aggression.
    Anikin A; Pisanski K; Reby D
    R Soc Open Sci; 2022 Jan; 9(1):211496. PubMed ID: 35242348
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Interspeaker variability in hard palate morphology and vowel production.
    Lammert A; Proctor M; Narayanan S
    J Speech Lang Hear Res; 2013 Dec; 56(6):S1924-33. PubMed ID: 24687447
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Comparison of vocal tract formants in singing and nonperiodic phonation.
    Miller DG; Sulter AM; Schutte HK; Wolf RF
    J Voice; 1997 Mar; 11(1):1-11. PubMed ID: 9075171
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Relationship between tongue positions and formant frequencies in female speakers.
    Lee J; Shaiman S; Weismer G
    J Acoust Soc Am; 2016 Jan; 139(1):426-40. PubMed ID: 26827037
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.