These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 38158557)

  • 1. Oxepin Derivatives Formation from Gas-Phase Catechol Ozonolysis.
    Rynjah S; Baro B; Sarkar B
    J Phys Chem A; 2024 Jan; 128(1):251-260. PubMed ID: 38158557
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Formation of Criegee intermediates and peroxy acids: a computational study of gas-phase 1,3-cycloaddition of ozone with catechol.
    Deb DK; Sarkar B
    Phys Chem Chem Phys; 2019 Jul; 21(27):14589-14597. PubMed ID: 31140492
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Theoretical study on the formation of Criegee intermediates from ozonolysis of pentenal: An example of trans-2-pentenal.
    Xiao W; Sun S; Yan S; Wu W; Sun J
    Chemosphere; 2022 Sep; 303(Pt 3):135142. PubMed ID: 35636604
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Unimolecular Decay of Criegee Intermediates to OH Radical Products: Prompt and Thermal Decay Processes.
    Lester MI; Klippenstein SJ
    Acc Chem Res; 2018 Apr; 51(4):978-985. PubMed ID: 29613756
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stability of Criegee intermediates formed by ozonolysis of different double bonds.
    Kalinowski J; Heinonen P; Kilpeläinen I; Räsänen M; Gerber RB
    J Phys Chem A; 2015 Mar; 119(11):2318-25. PubMed ID: 25188402
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Secondary Organic Aerosol Formation from Aromatic Alkene Ozonolysis: Influence of the Precursor Structure on Yield, Chemical Composition, and Mechanism.
    Chiappini L; Perraudin E; Maurin N; Picquet-Varrault B; Zheng W; Marchand N; Temime-Roussel B; Monod A; Le Person A; Bernard F; Eyglunent G; Mellouki A; Doussin JF
    J Phys Chem A; 2019 Feb; 123(7):1469-1484. PubMed ID: 30626185
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transient species in the ozonolysis of tetramethylethene.
    Yang X; Deng J; Li D; Chen J; Xu Y; Zhang K; Shang X; Cao Q
    J Environ Sci (China); 2020 Sep; 95():210-216. PubMed ID: 32653182
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kinetics and thermodynamics of limonene ozonolysis.
    Baptista L; Pfeifer R; da Silva EC; Arbilla G
    J Phys Chem A; 2011 Oct; 115(40):10911-9. PubMed ID: 21902193
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The kinetics of tetramethylethene ozonolysis: decomposition of the primary ozonide and subsequent product formation in the condensed phase.
    Epstein SA; Donahue NM
    J Phys Chem A; 2008 Dec; 112(51):13535-41. PubMed ID: 19055394
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nascent energy distribution of the Criegee intermediate CH
    Pfeifle M; Ma YT; Jasper AW; Harding LB; Hase WL; Klippenstein SJ
    J Chem Phys; 2018 May; 148(17):174306. PubMed ID: 29739207
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gas-phase ozonolysis of furans, methylfurans, and dimethylfurans in the atmosphere.
    Li M; Liu Y; Wang L
    Phys Chem Chem Phys; 2018 Oct; 20(38):24735-24743. PubMed ID: 30225482
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ozonolysis of cyclic alkenes as surrogates for biogenic terpenes: primary ozonide formation and decomposition.
    Epstein SA; Donahue NM
    J Phys Chem A; 2010 Jul; 114(28):7509-15. PubMed ID: 20578707
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Matrix isolation study of the ozonolysis of 1,3- and 1,4-cyclohexadiene: identification of novel reaction pathways.
    Pinelo L; Gudmundsdottir AD; Ault BS
    J Phys Chem A; 2013 May; 117(20):4174-82. PubMed ID: 23638640
    [TBL] [Abstract][Full Text] [Related]  

  • 14. QM/MM studies on ozonolysis of α-humulene and Criegee reactions with acids and water at air-water/acetonitrile interfaces.
    Xiao P; Yang JJ; Fang WH; Cui G
    Phys Chem Chem Phys; 2018 Jun; 20(23):16138-16150. PubMed ID: 29854994
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The gas-phase ozonolysis of α-humulene.
    Beck M; Winterhalter R; Herrmann F; Moortgat GK
    Phys Chem Chem Phys; 2011 Jun; 13(23):10970-1001. PubMed ID: 21461420
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Efficient Coupling of Reaction Pathways of Criegee Intermediates and Free Radicals in the Heterogeneous Ozonolysis of Alkenes.
    Zeng M; Wilson KR
    J Phys Chem Lett; 2020 Aug; 11(16):6580-6585. PubMed ID: 32787230
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stabilization of the Simplest Criegee Intermediate from the Reaction between Ozone and Ethylene: A High-Level Quantum Chemical and Kinetic Analysis of Ozonolysis.
    Nguyen TL; Lee H; Matthews DA; McCarthy MC; Stanton JF
    J Phys Chem A; 2015 Jun; 119(22):5524-33. PubMed ID: 25945650
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanisms for the formation of organic acids in the gas-phase ozonolysis of 3-carene.
    Ma Y; Porter RA; Chappell D; Russell AT; Marston G
    Phys Chem Chem Phys; 2009 Jun; 11(21):4184-97. PubMed ID: 19458820
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The gas-phase ozonolysis of beta-caryophyllene (C(15)H(24)). Part II: A theoretical study.
    Nguyen TL; Winterhalter R; Moortgat G; Kanawati B; Peeters J; Vereecken L
    Phys Chem Chem Phys; 2009 Jun; 11(21):4173-83. PubMed ID: 19458819
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Direct production of OH radicals upon CH overtone activation of (CH3)2COO Criegee intermediates.
    Liu F; Beames JM; Lester MI
    J Chem Phys; 2014 Dec; 141(23):234312. PubMed ID: 25527940
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.