These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 38159271)

  • 1. Assessing locomotory rate in response to food for the identification of neuronal and muscular defects in C. elegans.
    Petratou D; Fragkiadaki P; Lionaki E; Tavernarakis N
    STAR Protoc; 2024 Mar; 5(1):102801. PubMed ID: 38159271
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A comparison of experience-dependent locomotory behaviors and biogenic amine neurons in nematode relatives of Caenorhabditis elegans.
    Rivard L; Srinivasan J; Stone A; Ochoa S; Sternberg PW; Loer CM
    BMC Neurosci; 2010 Feb; 11():22. PubMed ID: 20167133
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Antagonistic Serotonergic and Octopaminergic Neural Circuits Mediate Food-Dependent Locomotory Behavior in
    Churgin MA; McCloskey RJ; Peters E; Fang-Yen C
    J Neurosci; 2017 Aug; 37(33):7811-7823. PubMed ID: 28698386
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assessment of dopaminergic neuron degeneration in a
    Palikaras K; SenGupta T; Nilsen H; Tavernarakis N
    STAR Protoc; 2022 Jun; 3(2):101264. PubMed ID: 35403008
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impaired Dopamine-Dependent Locomotory Behavior of C. elegans Neuroligin Mutants Depends on the Catechol-O-Methyltransferase COMT-4.
    Rodríguez-Ramos Á; Gámez-Del-Estal MM; Porta-de-la-Riva M; Cerón J; Ruiz-Rubio M
    Behav Genet; 2017 Nov; 47(6):596-608. PubMed ID: 28879499
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Caenorhabditis elegans selects distinct crawling and swimming gaits via dopamine and serotonin.
    Vidal-Gadea A; Topper S; Young L; Crisp A; Kressin L; Elbel E; Maples T; Brauner M; Erbguth K; Axelrod A; Gottschalk A; Siegel D; Pierce-Shimomura JT
    Proc Natl Acad Sci U S A; 2011 Oct; 108(42):17504-9. PubMed ID: 21969584
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Food responsiveness regulates episodic behavioral states in
    McCloskey RJ; Fouad AD; Churgin MA; Fang-Yen C
    J Neurophysiol; 2017 May; 117(5):1911-1934. PubMed ID: 28228583
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Conservation rules, their breakdown, and optimality in Caenorhabditis sinusoidal locomotion.
    Karbowski J; Cronin CJ; Seah A; Mendel JE; Cleary D; Sternberg PW
    J Theor Biol; 2006 Oct; 242(3):652-69. PubMed ID: 16759670
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Increased dopaminergic neurotransmission results in ethanol dependent sedative behaviors in Caenorhabditis elegans.
    Pandey P; Singh A; Kaur H; Ghosh-Roy A; Babu K
    PLoS Genet; 2021 Feb; 17(2):e1009346. PubMed ID: 33524034
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of ionizing radiation on locomotory behavior and mechanosensation in Caenorhabditis elegans.
    Suzuki M; Sakashita T; Yanase S; Kikuchi M; Ohba H; Higashitani A; Hamada N; Funayama T; Fukamoto K; Tsuji T; Kobayashi Y
    J Radiat Res; 2009 Mar; 50(2):119-25. PubMed ID: 19194068
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deficiency in RCAT-1 Function Causes Dopamine Metabolism Related Behavioral Disorders in
    Jeong H; Park JY; Lee JH; Baik JH; Kim CY; Cho JY; Driscoll M; Paik YK
    Int J Mol Sci; 2022 Feb; 23(4):. PubMed ID: 35216508
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dopamine signaling is essential for precise rates of locomotion by C. elegans.
    Omura DT; Clark DA; Samuel AD; Horvitz HR
    PLoS One; 2012; 7(6):e38649. PubMed ID: 22719914
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Protocol for assessing the healthspan of Caenorhabditis elegans after potential anti-aging drug treatment.
    Xiao Y; Zhang L; Liu Y
    STAR Protoc; 2023 May; 4(2):102285. PubMed ID: 37148246
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dopamine and glutamate control area-restricted search behavior in Caenorhabditis elegans.
    Hills T; Brockie PJ; Maricq AV
    J Neurosci; 2004 Feb; 24(5):1217-25. PubMed ID: 14762140
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Strengths and limitations of morphological and behavioral analyses in detecting dopaminergic deficiency in Caenorhabditis elegans.
    Smith LL; Ryde IT; Hartman JH; Romersi RF; Markovich Z; Meyer JN
    Neurotoxicology; 2019 Sep; 74():209-220. PubMed ID: 31323240
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microfluidic-based electrotaxis for on-demand quantitative analysis of Caenorhabditis elegans' locomotion.
    Tong J; Rezai P; Salam S; Selvaganapathy PR; Gupta BP
    J Vis Exp; 2013 May; (75):e50226. PubMed ID: 23665669
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neuroligin modulates the locomotory dopaminergic and serotonergic neuronal pathways of C. elegans.
    Izquierdo PG; Calahorro F; Ruiz-Rubio M
    Neurogenetics; 2013 Nov; 14(3-4):233-42. PubMed ID: 24100941
    [TBL] [Abstract][Full Text] [Related]  

  • 18. C. elegans locomotory rate is modulated by the environment through a dopaminergic pathway and by experience through a serotonergic pathway.
    Sawin ER; Ranganathan R; Horvitz HR
    Neuron; 2000 Jun; 26(3):619-31. PubMed ID: 10896158
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neurons regulating the duration of forward locomotion in Caenorhabditis elegans.
    Wakabayashi T; Kitagawa I; Shingai R
    Neurosci Res; 2004 Sep; 50(1):103-11. PubMed ID: 15288503
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reversal frequency in Caenorhabditis elegans represents an integrated response to the state of the animal and its environment.
    Zhao B; Khare P; Feldman L; Dent JA
    J Neurosci; 2003 Jun; 23(12):5319-28. PubMed ID: 12832557
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.