These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
111 related articles for article (PubMed ID: 38159405)
1. BART: A transferable liquid chromatography retention time library for bile acids. Ma Y; Cao Y; Song X; Min C; Man Z; Li Z J Chromatogr A; 2024 Jan; 1715():464602. PubMed ID: 38159405 [TBL] [Abstract][Full Text] [Related]
2. BAFinder: A Software for Unknown Bile Acid Identification Using Accurate Mass LC-MS/MS in Positive and Negative Modes. Ma Y; Cao Y; Song X; Zhang Y; Li J; Wang Y; Wu X; Qi X Anal Chem; 2022 Apr; 94(16):6242-6250. PubMed ID: 35403420 [TBL] [Abstract][Full Text] [Related]
3. Experimental design and re-parameterization of the Neue-Kuss model for accurate and precise prediction of isocratic retention factors from gradient measurements in reversed phase liquid chromatography. Rutan SC; Cash K; Stoll DR J Chromatogr A; 2023 Nov; 1711():464443. PubMed ID: 37890376 [TBL] [Abstract][Full Text] [Related]
4. A general strategy for performing temperature-programming in high performance liquid chromatography--prediction of segmented temperature gradients. Wiese S; Teutenberg T; Schmidt TC J Chromatogr A; 2011 Sep; 1218(39):6898-906. PubMed ID: 21872258 [TBL] [Abstract][Full Text] [Related]
5. Integration of semi-empirical MS/MS library with characteristic features for the annotation of novel amino acid-conjugated bile acids. Ma Y; Cao Y; Song X; Xu W; Luo Z; Shan J; Zhou J Analyst; 2023 Oct; 148(21):5380-5389. PubMed ID: 37743718 [TBL] [Abstract][Full Text] [Related]
6. Possibilities of retention prediction in fast gradient liquid chromatography. Part 3: Short silica monolithic columns. Jandera P; Hájek T J Chromatogr A; 2015 Sep; 1410():76-89. PubMed ID: 26239700 [TBL] [Abstract][Full Text] [Related]
7. Retention prediction of monoamine neurotransmitters in gradient liquid chromatography. Urban J; Nechvátalová M; Hekerle L J Sep Sci; 2022 Sep; 45(17):3319-3327. PubMed ID: 35855653 [TBL] [Abstract][Full Text] [Related]
9. Aligning LC peaks by converting gradient retention times to retention index of peptides in proteomic experiments. Shinoda K; Tomita M; Ishihama Y Bioinformatics; 2008 Jul; 24(14):1590-5. PubMed ID: 18492686 [TBL] [Abstract][Full Text] [Related]
10. Perspective on the Future Approaches to Predict Retention in Liquid Chromatography. Gritti F Anal Chem; 2021 Apr; 93(14):5653-5664. PubMed ID: 33797872 [TBL] [Abstract][Full Text] [Related]
11. Ion spray liquid chromatographic/mass spectrometric characterization of bile acids. Warrack BM; DiDonato GC Biol Mass Spectrom; 1993 Feb; 22(2):101-11. PubMed ID: 8448218 [TBL] [Abstract][Full Text] [Related]
12. Retention projection enables accurate calculation of liquid chromatographic retention times across labs and methods. Abate-Pella D; Freund DM; Ma Y; Simón-Manso Y; Hollender J; Broeckling CD; Huhman DV; Krokhin OV; Stoll DR; Hegeman AD; Kind T; Fiehn O; Schymanski EL; Prenni JE; Sumner LW; Boswell PG J Chromatogr A; 2015 Sep; 1412():43-51. PubMed ID: 26292625 [TBL] [Abstract][Full Text] [Related]
13. Ideal versus real automated twin column recycling chromatography process. Gritti F; Leal M; McDonald T; Gilar M J Chromatogr A; 2017 Jul; 1508():81-94. PubMed ID: 28610798 [TBL] [Abstract][Full Text] [Related]
14. Closed form approximations to predict retention times and peak widths in gradient elution under conditions of sample volume overload and sample solvent mismatch. Rutan SC; Jeong LN; Carr PW; Stoll DR; Weber SG J Chromatogr A; 2021 Sep; 1653():462376. PubMed ID: 34293516 [TBL] [Abstract][Full Text] [Related]
15. Easy and accurate high-performance liquid chromatography retention prediction with different gradients, flow rates, and instruments by back-calculation of gradient and flow rate profiles. Boswell PG; Schellenberg JR; Carr PW; Cohen JD; Hegeman AD J Chromatogr A; 2011 Sep; 1218(38):6742-9. PubMed ID: 21840007 [TBL] [Abstract][Full Text] [Related]
16. Interpretive search of optimal isocratic and gradient separations in micellar liquid chromatography in extended organic solvent domains. Navarro-Huerta JA; Vargas-García AG; Torres-Lapasió JR; García-Alvarez-Coque MC J Chromatogr A; 2020 Apr; 1616():460784. PubMed ID: 31864726 [TBL] [Abstract][Full Text] [Related]
17. MultiConditionRT: Predicting liquid chromatography retention time for emerging contaminants for a wide range of eluent compositions and stationary phases. Souihi A; Mohai MP; Palm E; Malm L; Kruve A J Chromatogr A; 2022 Mar; 1666():462867. PubMed ID: 35139450 [TBL] [Abstract][Full Text] [Related]
18. Advancing HIC method development: Retention-time modeling and tuning selectivity with ternary mobile-phase systems. Ewonde Ewonde R; Molenaar SRA; Broeckhoven K; Eeltink S J Chromatogr A; 2024 Aug; 1730():465133. PubMed ID: 38996515 [TBL] [Abstract][Full Text] [Related]
19. Simulation of elution profiles in liquid chromatography - II: Investigation of injection volume overload under gradient elution conditions applied to second dimension separations in two-dimensional liquid chromatography. Stoll DR; Sajulga RW; Voigt BN; Larson EJ; Jeong LN; Rutan SC J Chromatogr A; 2017 Nov; 1523():162-172. PubMed ID: 28747254 [TBL] [Abstract][Full Text] [Related]
20. High-performance liquid chromatographic-electrospray mass spectrometric analysis of bile acids in biological fluids. Roda A; Gioacchini AM; Cerrè C; Baraldini M J Chromatogr B Biomed Appl; 1995 Mar; 665(2):281-94. PubMed ID: 7795808 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]