These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
24. Effect of roughness geometry on wetting and dewetting of rough PDMS surfaces. Kanungo M; Mettu S; Law KY; Daniel S Langmuir; 2014 Jul; 30(25):7358-68. PubMed ID: 24911256 [TBL] [Abstract][Full Text] [Related]
25. Utilizing dynamic tensiometry to quantify contact angle hysteresis and wetting state transitions on nonwetting surfaces. Kleingartner JA; Srinivasan S; Mabry JM; Cohen RE; McKinley GH Langmuir; 2013 Nov; 29(44):13396-406. PubMed ID: 24070378 [TBL] [Abstract][Full Text] [Related]
26. Dynamic wetting and spreading and the role of topography. McHale G; Newton MI; Shirtcliffe NJ J Phys Condens Matter; 2009 Nov; 21(46):464122. PubMed ID: 21715886 [TBL] [Abstract][Full Text] [Related]
27. Wettability of silicone-hydrogel contact lenses in the presence of tear-film components. Cheng L; Muller SJ; Radke CJ Curr Eye Res; 2004 Feb; 28(2):93-108. PubMed ID: 14972715 [TBL] [Abstract][Full Text] [Related]
28. Wetting and wetting transitions on copper-based super-hydrophobic surfaces. Shirtcliffe NJ; McHale G; Newton MI; Perry CC Langmuir; 2005 Feb; 21(3):937-43. PubMed ID: 15667171 [TBL] [Abstract][Full Text] [Related]
29. Apparent contact angles for reactive wetting of smooth, rough, and heterogeneous surfaces calculated from the variational principles. Bormashenko E J Colloid Interface Sci; 2019 Mar; 537():597-603. PubMed ID: 30471614 [TBL] [Abstract][Full Text] [Related]
31. Gravitational Effect on the Advancing and Receding Angles of a Two-Dimensional Cassie-Baxter Droplet on a Textured Surface. Kim D; Jeong M; Kang K; Ryu S Langmuir; 2020 Jun; 36(21):6061-6069. PubMed ID: 32370510 [TBL] [Abstract][Full Text] [Related]
32. Model and experimental studies for contact angles of surfactant solutions on rough and smooth hydrophobic surfaces. Milne AJ; Elliott JA; Zabeti P; Zhou J; Amirfazli A Phys Chem Chem Phys; 2011 Sep; 13(36):16208-19. PubMed ID: 21822523 [TBL] [Abstract][Full Text] [Related]
33. Contact line pinning on microstructured surfaces for liquids in the Wenzel state. Forsberg PS; Priest C; Brinkmann M; Sedev R; Ralston J Langmuir; 2010 Jan; 26(2):860-5. PubMed ID: 19702258 [TBL] [Abstract][Full Text] [Related]
34. Apparent Contact Angles on Lubricant-Impregnated Surfaces/SLIPS: From Superhydrophobicity to Electrowetting. McHale G; Orme BV; Wells GG; Ledesma-Aguilar R Langmuir; 2019 Mar; 35(11):4197-4204. PubMed ID: 30759342 [TBL] [Abstract][Full Text] [Related]
35. Wetting hysteresis of nanodrops on nanorough surfaces. Chang CC; Sheng YJ; Tsao HK Phys Rev E; 2016 Oct; 94(4-1):042807. PubMed ID: 27841480 [TBL] [Abstract][Full Text] [Related]
36. Revisiting the supplementary relationship of dynamic contact angles measured by sessile-droplet and captive-bubble methods: Role of surface roughness. Sarkar S; Roy T; Roy A; Moitra S; Ganguly R; Megaridis CM J Colloid Interface Sci; 2021 Jan; 581(Pt B):690-697. PubMed ID: 32814192 [TBL] [Abstract][Full Text] [Related]
39. Wetting hysteresis induced by temperature changes: Supercooled water on hydrophobic surfaces. Heydari G; Sedighi Moghaddam M; Tuominen M; Fielden M; Haapanen J; Mäkelä JM; Claesson PM J Colloid Interface Sci; 2016 Apr; 468():21-33. PubMed ID: 26821148 [TBL] [Abstract][Full Text] [Related]
40. Contact angle hysteresis on doubly periodic smooth rough surfaces in Wenzel's regime: The role of the contact line depinning mechanism. Iliev S; Pesheva N; Iliev P Phys Rev E; 2018 Apr; 97(4-1):042801. PubMed ID: 29758646 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]