BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 38159742)

  • 1. Deep convolutional neural networks for aged microplastics identification by Fourier transform infrared spectra classification.
    Zeng G; Ma Y; Du M; Chen T; Lin L; Dai M; Luo H; Hu L; Zhou Q; Pan X
    Sci Total Environ; 2024 Feb; 913():169623. PubMed ID: 38159742
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spectral Classification of Large-Scale Blended (Micro)Plastics Using FT-IR Raw Spectra and Image-Based Machine Learning.
    Liu Y; Yao W; Qin F; Zhou L; Zheng Y
    Environ Sci Technol; 2023 Apr; 57(16):6656-6663. PubMed ID: 37052503
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Leveraging deep learning for automatic recognition of microplastics (MPs) via focal plane array (FPA) micro-FT-IR imaging.
    Zhu Z; Parker W; Wong A
    Environ Pollut; 2023 Nov; 337():122548. PubMed ID: 37757933
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Automatic classification of microplastics and natural organic matter mixtures using a deep learning model.
    Lee S; Jeong H; Hong SM; Yun D; Lee J; Kim E; Cho KH
    Water Res; 2023 Nov; 246():120710. PubMed ID: 37857009
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Convolutional neural network for soil microplastic contamination screening using infrared spectroscopy.
    Ng W; Minasny B; McBratney A
    Sci Total Environ; 2020 Feb; 702():134723. PubMed ID: 31731131
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Component identification for the SERS spectra of microplastics mixture with convolutional neural network.
    Luo Y; Su W; Xu D; Wang Z; Wu H; Chen B; Wu J
    Sci Total Environ; 2023 Oct; 895():165138. PubMed ID: 37379925
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A transfer learning-based CNN and LSTM hybrid deep learning model to classify motor imagery EEG signals.
    Khademi Z; Ebrahimi F; Kordy HM
    Comput Biol Med; 2022 Apr; 143():105288. PubMed ID: 35168083
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Convolutional Neural Network Based on Extreme Learning Machine for Maritime Ships Recognition in Infrared Images.
    Khellal A; Ma H; Fei Q
    Sensors (Basel); 2018 May; 18(5):. PubMed ID: 29747439
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Expert System for Fourier Transform Infrared Spectra Recognition Based on a Convolutional Neural Network With Multiclass Classification.
    Koshelev DS
    Appl Spectrosc; 2024 Apr; 78(4):387-397. PubMed ID: 38281905
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural Analysis and Classification of Low-Molecular-Weight Hyaluronic Acid by Near-Infrared Spectroscopy: A Comparison between Traditional Machine Learning and Deep Learning.
    Tian W; Zang L; Nie L; Li L; Zhong L; Guo X; Huang S; Zang H
    Molecules; 2023 Jan; 28(2):. PubMed ID: 36677867
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Application of a Hybrid Fusion Classification Process for Identification of Microplastics Based on Fourier Transform Infrared Spectroscopy.
    Chabuka BK; Kalivas JH
    Appl Spectrosc; 2020 Sep; 74(9):1167-1183. PubMed ID: 32297518
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Convolutional Neural Networks (CNNs) for Pneumonia Classification on Pediatric Chest Radiographs.
    Saboo YS; Kapse S; Prasanna P
    Cureus; 2023 Aug; 15(8):e44130. PubMed ID: 37753018
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A classification model for detection of ductal carcinoma in situ by Fourier transform infrared spectroscopy based on deep structured semantic model.
    Du Y; Xie F; Wu G; Chen P; Yang Y; Yang L; Yin L; Wang S
    Anal Chim Acta; 2023 Apr; 1251():340991. PubMed ID: 36925283
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Study on detection method of microplastics in farmland soil based on hyperspectral imaging technology.
    Xu L; Chen Y; Feng A; Shi X; Feng Y; Yang Y; Wang Y; Wu Z; Zou Z; Ma W; He Y; Yang N; Feng J; Zhao Y
    Environ Res; 2023 Sep; 232():116389. PubMed ID: 37302742
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of microplastics using a convolutional neural network based on micro-Raman spectroscopy.
    Ren L; Liu S; Huang S; Wang Q; Lu Y; Song J; Guo J
    Talanta; 2023 Aug; 260():124611. PubMed ID: 37163925
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Raman spectroscopy and convolutional neural networks for monitoring biochemical radiation response in breast tumour xenografts.
    Fuentes AM; Narayan A; Milligan K; Lum JJ; Brolo AG; Andrews JL; Jirasek A
    Sci Rep; 2023 Jan; 13(1):1530. PubMed ID: 36707535
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deep metabolome: Applications of deep learning in metabolomics.
    Pomyen Y; Wanichthanarak K; Poungsombat P; Fahrmann J; Grapov D; Khoomrung S
    Comput Struct Biotechnol J; 2020; 18():2818-2825. PubMed ID: 33133423
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recent advances in the application of machine learning methods to improve identification of the microplastics in environment.
    Lin JY; Liu HT; Zhang J
    Chemosphere; 2022 Nov; 307(Pt 4):136092. PubMed ID: 35995191
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hybrid morphological-convolutional neural networks for computer-aided diagnosis.
    Canales-Fiscal MR; Tamez-Peña JG
    Front Artif Intell; 2023; 6():1253183. PubMed ID: 37795497
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Blended fabric with integrated neural network based on attention mechanism qualitative identification method of near infrared spectroscopy.
    Song L; Chen E; Zheng T; Li J; Wang H; Zhu X
    Spectrochim Acta A Mol Biomol Spectrosc; 2022 Aug; 276():121214. PubMed ID: 35395464
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.