These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 38160)

  • 1. Studies on dehydrogenases of the glucuronate-xylulose cycle in the livers of diabetic mice and rats.
    Tulsiani DR; Touster O
    Diabetes; 1979 Sep; 28(9):793-8. PubMed ID: 38160
    [TBL] [Abstract][Full Text] [Related]  

  • 2. REGULATION OF ASCORBIC ACID AND OF XYLULOSE SYNTHESIS IN RAT-LIVER EXTRACTS. THE EFFECT OF STARVATION ON THE ENZYMES OF THE GLUCURONIC ACID PATHWAY.
    STIRPE F; COMPORTI M
    Biochem J; 1965 May; 95(2):354-62. PubMed ID: 14340084
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regulation of pathways of glucose metabolism in kidney. The effect of experimental diabetes on the activity of the pentose phosphate pathway and the glucuronate-xylulose pathway.
    Sochor M; Baquer NZ; McLean P
    Arch Biochem Biophys; 1979 Dec; 198(2):632-46. PubMed ID: 160215
    [No Abstract]   [Full Text] [Related]  

  • 4. Glucose overutilization in diabetes: evidence from studies on the changes in hexokinase, the pentose phosphate pathway and glucuronate-xylulose pathway in rat kidney cortex in diabetes.
    Sochor M; Baquer NZ; McLean P
    Biochem Biophys Res Commun; 1979 Jan; 86(1):32-9. PubMed ID: 435303
    [No Abstract]   [Full Text] [Related]  

  • 5. Coenzyme specificity of mammalian liver D-glycerate dehydrogenase.
    Van Schaftingen E; Draye JP; Van Hoof F
    Eur J Biochem; 1989 Dec; 186(1-2):355-9. PubMed ID: 2689175
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Accumulation of xylitol in the mammalian lens is related to glucuronate metabolism.
    Goode D; Lewis ME; Crabbe MJ
    FEBS Lett; 1996 Oct; 395(2-3):174-8. PubMed ID: 8898089
    [TBL] [Abstract][Full Text] [Related]  

  • 7. METABOLISM OF D-GLUCURONOLACTONE IN MAMMALIAN SYSTEMS. 3. FURTHER STUDIES OF D-GLUCURONOLACTONE DEHYDROGENASE OF RAT LIVER.
    MARSH CA
    Biochem J; 1963 Oct; 89(1):108-14. PubMed ID: 14097351
    [No Abstract]   [Full Text] [Related]  

  • 8. The involvement of liver fructokinase in the metabolism of D-xylulose and xylitol in isolated rat hepatocytes.
    Barngrover DA; Dills WL
    J Nutr; 1983 Mar; 113(3):522-30. PubMed ID: 6298387
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The pentose phosphate pathway of glucose metabolism. Hormonal and dietary control of the oxidative and non-oxidative reactions of the cycle in liver.
    Novello F; Gumaa JA; McLean P
    Biochem J; 1969 Mar; 111(5):713-25. PubMed ID: 5791534
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Alterations in nicotinamide and adenine nucleotide systems during mixed-function oxidation of p-nitroanisole in perfused livers from normal and phenobarbital-treated rats.
    Kauffman FC; Evans RK; Thurman RG
    Biochem J; 1977 Sep; 166(3):583-92. PubMed ID: 23104
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Enzymes catalyzing the reduction of aldopentoses and the oxidation of pentitols in Mycobacteria].
    Andrejew A
    C R Seances Acad Sci D; 1979 Dec; 289(16):1241-4. PubMed ID: 120778
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Concerning the mechanism for transfer of D-glucuronate from myo-inositol oxygenase to D-glucuronate reductase.
    Naber NI; Hamilton GA
    Biochim Biophys Acta; 1987 Feb; 911(3):365-8. PubMed ID: 3814609
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Glucose-6-phosphate dehydrogenase activity and NADPH/NADP+ ratio in liver and pancreas are dependent on the severity of hyperglycemia in rat.
    Díaz-Flores M; Ibáñez-Hernández MA; Galván RE; Gutiérrez M; Durán-Reyes G; Medina-Navarro R; Pascoe-Lira D; Ortega-Camarillo C; Vilar-Rojas C; Cruz M; Baiza-Gutman LA
    Life Sci; 2006 Apr; 78(22):2601-7. PubMed ID: 16325866
    [TBL] [Abstract][Full Text] [Related]  

  • 14. THE OXIDATION OF D- AND L-GLYCERATE BY RAT LIVER.
    DAWKINS PD; DICKENS F
    Biochem J; 1965 Feb; 94(2):353-67. PubMed ID: 14346088
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of dietary DL-ethionine and/or DL-methionine on egg laying and activities of some cytoplasmic NAD linked-dehydrogenases and NADPH-producing enzymes in liver of Japanese quail, Coturnix coturnix japonica.
    Yamada M
    J Nutr; 1977 May; 107(5):716-23. PubMed ID: 16100
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The levels of nicotinamide nucleotides in liver microsomes and their possible significance to the function of hexose phosphate dehydrogenase.
    Bublitz C; Lawler CA
    Biochem J; 1987 Jul; 245(1):263-7. PubMed ID: 2822015
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A possible functional relationship between microsomal aromatic aldehyde-ketone reductase and hexose-6-phosphate dehydrogenase.
    Sawada H; Hayashibara M; Hara A; Nakayama T
    J Biochem; 1980 Mar; 87(3):985-8. PubMed ID: 6993453
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Polyol-pathway enzymes of human brain. Partial purification and properties of aldose reductase and hexonate dehydrogenase.
    O'Brien MM; Schofield PJ
    Biochem J; 1980 Apr; 187(1):21-30. PubMed ID: 6773519
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Topochemical demonstration of the polyol-dehydrogenase system. Utilization of xylitol, sorbitol and mannitol].
    Stiller D; Hempel E
    Acta Histochem; 1970; 36(2):404-7. PubMed ID: 4393667
    [No Abstract]   [Full Text] [Related]  

  • 20. The stereospecificity of sequential nicotinamide-adenine dinucleotide-dependent oxidoreductases in relation to the evolution of metabolic sequences.
    do Nascimento KH; Davies DD
    Biochem J; 1975 Sep; 149(3):553-7. PubMed ID: 1200995
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.