These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 38160084)

  • 1. Harnessing deep learning for enhanced ligand docking.
    Zhang X; Shen C; Hsieh CY; Hou T
    Trends Pharmacol Sci; 2024 Feb; 45(2):103-106. PubMed ID: 38160084
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Advancing Ligand Docking through Deep Learning: Challenges and Prospects in Virtual Screening.
    Zhang X; Shen C; Zhang H; Kang Y; Hsieh CY; Hou T
    Acc Chem Res; 2024 May; 57(10):1500-1509. PubMed ID: 38577892
    [TBL] [Abstract][Full Text] [Related]  

  • 3. D3CARP: a comprehensive platform with multiple-conformation based docking, ligand similarity search and deep learning approaches for target prediction and virtual screening.
    Shi Y; Zhang X; Yang Y; Cai T; Peng C; Wu L; Zhou L; Han J; Ma M; Zhu W; Xu Z
    Comput Biol Med; 2023 Sep; 164():107283. PubMed ID: 37536095
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Protein-Ligand Docking in the Machine-Learning Era.
    Yang C; Chen EA; Zhang Y
    Molecules; 2022 Jul; 27(14):. PubMed ID: 35889440
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A fully differentiable ligand pose optimization framework guided by deep learning and a traditional scoring function.
    Wang Z; Zheng L; Wang S; Lin M; Wang Z; Kong AW; Mu Y; Wei Y; Li W
    Brief Bioinform; 2023 Jan; 24(1):. PubMed ID: 36502369
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Machine learning in computational docking.
    Khamis MA; Gomaa W; Ahmed WF
    Artif Intell Med; 2015 Mar; 63(3):135-52. PubMed ID: 25724101
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deep Learning Model for Efficient Protein-Ligand Docking with Implicit Side-Chain Flexibility.
    Masters MR; Mahmoud AH; Wei Y; Lill MA
    J Chem Inf Model; 2023 Mar; 63(6):1695-1707. PubMed ID: 36916514
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ultrahigh Throughput Protein-Ligand Docking with Deep Learning.
    Clyde A
    Methods Mol Biol; 2022; 2390():301-319. PubMed ID: 34731475
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Supervised consensus scoring for docking and virtual screening.
    Teramoto R; Fukunishi H
    J Chem Inf Model; 2007; 47(2):526-34. PubMed ID: 17295466
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Task-Specific Scoring Functions for Predicting Ligand Binding Poses and Affinity and for Screening Enrichment.
    Ashtawy HM; Mahapatra NR
    J Chem Inf Model; 2018 Jan; 58(1):119-133. PubMed ID: 29190087
    [TBL] [Abstract][Full Text] [Related]  

  • 11. EQUIBIND: A geometric deep learning-based protein-ligand binding prediction method.
    Li Y; Li L; Wang S; Tang X
    Drug Discov Ther; 2023 Nov; 17(5):363-364. PubMed ID: 37766553
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Equivariant Flexible Modeling of the Protein-Ligand Binding Pose with Geometric Deep Learning.
    Dong T; Yang Z; Zhou J; Chen CY
    J Chem Theory Comput; 2023 Nov; 19(22):8446-8459. PubMed ID: 37938978
    [TBL] [Abstract][Full Text] [Related]  

  • 13. SCORCH: Improving structure-based virtual screening with machine learning classifiers, data augmentation, and uncertainty estimation.
    McGibbon M; Money-Kyrle S; Blay V; Houston DR
    J Adv Res; 2023 Apr; 46():135-147. PubMed ID: 35901959
    [TBL] [Abstract][Full Text] [Related]  

  • 14. DeepBindBC: A practical deep learning method for identifying native-like protein-ligand complexes in virtual screening.
    Zhang H; Zhang T; Saravanan KM; Liao L; Wu H; Zhang H; Zhang H; Pan Y; Wu X; Wei Y
    Methods; 2022 Sep; 205():247-262. PubMed ID: 35878751
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Machine-learning methods for ligand-protein molecular docking.
    Crampon K; Giorkallos A; Deldossi M; Baud S; Steffenel LA
    Drug Discov Today; 2022 Jan; 27(1):151-164. PubMed ID: 34560276
    [TBL] [Abstract][Full Text] [Related]  

  • 16. FRAGSITE2: A structure and fragment-based approach for virtual ligand screening.
    Zhou H; Skolnick J
    Protein Sci; 2024 Jan; 33(1):e4869. PubMed ID: 38100293
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deep Scoring Neural Network Replacing the Scoring Function Components to Improve the Performance of Structure-Based Molecular Docking.
    Yang L; Yang G; Chen X; Yang Q; Yao X; Bing Z; Niu Y; Huang L; Yang L
    ACS Chem Neurosci; 2021 Jun; 12(12):2133-2142. PubMed ID: 34081851
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Combining Docking Pose Rank and Structure with Deep Learning Improves Protein-Ligand Binding Mode Prediction over a Baseline Docking Approach.
    Morrone JA; Weber JK; Huynh T; Luo H; Cornell WD
    J Chem Inf Model; 2020 Sep; 60(9):4170-4179. PubMed ID: 32077698
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Protein flexibility in ligand docking and virtual screening to protein kinases.
    Cavasotto CN; Abagyan RA
    J Mol Biol; 2004 Mar; 337(1):209-25. PubMed ID: 15001363
    [TBL] [Abstract][Full Text] [Related]  

  • 20. DynamicBind: predicting ligand-specific protein-ligand complex structure with a deep equivariant generative model.
    Lu W; Zhang J; Huang W; Zhang Z; Jia X; Wang Z; Shi L; Li C; Wolynes PG; Zheng S
    Nat Commun; 2024 Feb; 15(1):1071. PubMed ID: 38316797
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.