These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 38160295)

  • 21. Development of a novel dementia risk prediction model in the general population: A large, longitudinal, population-based machine-learning study.
    You J; Zhang YR; Wang HF; Yang M; Feng JF; Yu JT; Cheng W
    EClinicalMedicine; 2022 Nov; 53():101665. PubMed ID: 36187723
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Comparison of sequencing data processing pipelines and application to underrepresented African human populations.
    Breton G; Johansson ACV; Sjödin P; Schlebusch CM; Jakobsson M
    BMC Bioinformatics; 2021 Oct; 22(1):488. PubMed ID: 34627144
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The construction of cross-population polygenic risk scores using transfer learning.
    Zhao Z; Fritsche LG; Smith JA; Mukherjee B; Lee S
    Am J Hum Genet; 2022 Nov; 109(11):1998-2008. PubMed ID: 36240765
    [TBL] [Abstract][Full Text] [Related]  

  • 24. XPXP: improving polygenic prediction by cross-population and cross-phenotype analysis.
    Xiao J; Cai M; Hu X; Wan X; Chen G; Yang C
    Bioinformatics; 2022 Mar; 38(7):1947-1955. PubMed ID: 35040939
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Improving the regional Y-STR haplotype resolution utilizing haplogroup-determining Y-SNPs and the application of machine learning in Y-SNP haplogroup prediction in a forensic Y-STR database: A pilot study on male Chinese Yunnan Zhaoyang Han population.
    Yin C; He Z; Wang Y; He X; Zhang X; Xia M; Zhai D; Chang K; Chen X; Chen X; Chen F; Jin L; Li S
    Forensic Sci Int Genet; 2022 Mar; 57():102659. PubMed ID: 35007855
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Beyond multidrug resistance: Leveraging rare variants with machine and statistical learning models in Mycobacterium tuberculosis resistance prediction.
    Chen ML; Doddi A; Royer J; Freschi L; Schito M; Ezewudo M; Kohane IS; Beam A; Farhat M
    EBioMedicine; 2019 May; 43():356-369. PubMed ID: 31047860
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Machine Learning Approaches for Fracture Risk Assessment: A Comparative Analysis of Genomic and Phenotypic Data in 5130 Older Men.
    Wu Q; Nasoz F; Jung J; Bhattarai B; Han MV
    Calcif Tissue Int; 2020 Oct; 107(4):353-361. PubMed ID: 32728911
    [TBL] [Abstract][Full Text] [Related]  

  • 28. COVID-Net Biochem: an explainability-driven framework to building machine learning models for predicting survival and kidney injury of COVID-19 patients from clinical and biochemistry data.
    Aboutalebi H; Pavlova M; Shafiee MJ; Florea A; Hryniowski A; Wong A
    Sci Rep; 2023 Oct; 13(1):17001. PubMed ID: 37813920
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Uncovering Clinical Risk Factors and Predicting Severe COVID-19 Cases Using UK Biobank Data: Machine Learning Approach.
    Wong KC; Xiang Y; Yin L; So HC
    JMIR Public Health Surveill; 2021 Sep; 7(9):e29544. PubMed ID: 34591027
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effect of machine learning re-sampling techniques for imbalanced datasets in
    Xie C; Du R; Ho JW; Pang HH; Chiu KW; Lee EY; Vardhanabhuti V
    Eur J Nucl Med Mol Imaging; 2020 Nov; 47(12):2826-2835. PubMed ID: 32253486
    [TBL] [Abstract][Full Text] [Related]  

  • 31. TARGETING UNDERREPRESENTED POPULATIONS IN PRECISION MEDICINE: A FEDERATED TRANSFER LEARNING APPROACH.
    Li BS; Cai T; Duan R
    Ann Appl Stat; 2023 Dec; 17(4):2970-2992. PubMed ID: 39314265
    [TBL] [Abstract][Full Text] [Related]  

  • 32. PeNGaRoo, a combined gradient boosting and ensemble learning framework for predicting non-classical secreted proteins.
    Zhang Y; Yu S; Xie R; Li J; Leier A; Marquez-Lago TT; Akutsu T; Smith AI; Ge Z; Wang J; Lithgow T; Song J
    Bioinformatics; 2020 Feb; 36(3):704-712. PubMed ID: 31393553
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Prediction of Neurological Outcomes in Out-of-hospital Cardiac Arrest Survivors Immediately after Return of Spontaneous Circulation: Ensemble Technique with Four Machine Learning Models.
    Heo JH; Kim T; Shin J; Suh GJ; Kim J; Jung YS; Park SM; Kim S;
    J Korean Med Sci; 2021 Jul; 36(28):e187. PubMed ID: 34282605
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Enhancing inclusion of diverse populations in genomics: A competence framework.
    Sharif SM; Blyth M; Ahmed M; Sheridan E; Saltus R; Yu J; Tonkin E; Kirk M
    J Genet Couns; 2020 Apr; 29(2):282-292. PubMed ID: 32250032
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Improving genetic risk modeling of dementia from real-world data in underrepresented populations.
    Fu M; Valiente-Banuet L; Wadhwa SS; ; ; Pasaniuc B; Vossel K; Chang TS
    medRxiv; 2024 Feb; ():. PubMed ID: 38370649
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Improving genetic risk modeling of dementia from real-world data in underrepresented populations.
    Chang T; Fu M; Valiente-Banuet L; Wadhwa S; Pasaniuc B; Vossel K
    Res Sq; 2024 Feb; ():. PubMed ID: 38410460
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Eye-color and Type-2 diabetes phenotype prediction from genotype data using deep learning methods.
    Muneeb M; Henschel A
    BMC Bioinformatics; 2021 Apr; 22(1):198. PubMed ID: 33874881
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Machine learning algorithms for outcome prediction in (chemo)radiotherapy: An empirical comparison of classifiers.
    Deist TM; Dankers FJWM; Valdes G; Wijsman R; Hsu IC; Oberije C; Lustberg T; van Soest J; Hoebers F; Jochems A; El Naqa I; Wee L; Morin O; Raleigh DR; Bots W; Kaanders JH; Belderbos J; Kwint M; Solberg T; Monshouwer R; Bussink J; Dekker A; Lambin P
    Med Phys; 2018 Jul; 45(7):3449-3459. PubMed ID: 29763967
    [TBL] [Abstract][Full Text] [Related]  

  • 39. MegaR: an interactive R package for rapid sample classification and phenotype prediction using metagenome profiles and machine learning.
    Dhungel E; Mreyoud Y; Gwak HJ; Rajeh A; Rho M; Ahn TH
    BMC Bioinformatics; 2021 Jan; 22(1):25. PubMed ID: 33461494
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Machine learning models for net photosynthetic rate prediction using poplar leaf phenotype data.
    Zhang XY; Huang Z; Su X; Siu A; Song Y; Zhang D; Fang Q
    PLoS One; 2020; 15(2):e0228645. PubMed ID: 32045452
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.