These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 38160321)

  • 1. Analogous Design of a Microlayered Silicon Oxide-Based Electrode to the General Electrode Structure for Thin-Film Lithium-Ion Batteries.
    Kim JH; Song A; Park JM; Park JS; Behera S; Cho E; Park YC; Kim NY; Jung JW; Lee SJ; Kim HS
    Adv Mater; 2024 Apr; 36(14):e2309183. PubMed ID: 38160321
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High Electrochemical Performance Silicon Thin-Film Free-Standing Electrodes Based on Buckypaper for Flexible Lithium-Ion Batteries.
    Nyamaa O; Seo DH; Lee JS; Jeong HM; Huh SC; Yang JH; Dolgor E; Noh JP
    Materials (Basel); 2021 Apr; 14(8):. PubMed ID: 33921824
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Step toward High-Energy Silicon-Based Thin Film Lithium Ion Batteries.
    Reyes Jiménez A; Klöpsch R; Wagner R; Rodehorst UC; Kolek M; Nölle R; Winter M; Placke T
    ACS Nano; 2017 May; 11(5):4731-4744. PubMed ID: 28437078
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High Lithium Ion Transport Through rGO-Wrapped LiNi
    Ahn W; Seo MH; Pham TK; Nguyen QH; Luu VT; Cho Y; Lee YW; Cho N; Jeong SK
    Front Chem; 2019; 7():361. PubMed ID: 31192189
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interface Engineering of Silicon/Carbon Thin-Film Anodes for High-Rate Lithium-Ion Batteries.
    Tong L; Wang P; Fang W; Guo X; Bao W; Yang Y; Shen S; Qiu F
    ACS Appl Mater Interfaces; 2020 Jul; 12(26):29242-29252. PubMed ID: 32484322
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced Structural Stability and Electrochemical Performance of LiNi
    Liu Z; Li J; Zhu M; Wang L; Kang Y; Dang Z; Yan J; He X
    Materials (Basel); 2021 Apr; 14(8):. PubMed ID: 33916961
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrochemical Performance of an Ultrathin Surface Oxide-Modulated Nano-Si Anode Confined in a Graphite Matrix for Highly Reversible Lithium-Ion Batteries.
    Maddipatla R; Loka C; Lee KS
    ACS Appl Mater Interfaces; 2020 Dec; 12(49):54608-54618. PubMed ID: 33231419
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrochemical Properties of the LiNi
    Fu J; Mu D; Wu B; Bi J; Cui H; Yang H; Wu H; Wu F
    ACS Appl Mater Interfaces; 2018 Jun; 10(23):19704-19711. PubMed ID: 29790731
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cross-Linked γ-Polyglutamic Acid as an Aqueous SiO
    Xiao H; Qiu J; Wu S; Xie L; Zhou W; Wei X; Hui KN; Zhang M; Lin Z
    ACS Appl Mater Interfaces; 2022 Apr; 14(16):18625-18633. PubMed ID: 35417145
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Manipulating Oxidation of Silicon with Fresh Surface Enabling Stable Battery Anode.
    Ge G; Li G; Wang X; Chen X; Fu L; Liu X; Mao E; Liu J; Yang X; Qian C; Sun Y
    Nano Lett; 2021 Apr; 21(7):3127-3133. PubMed ID: 33734706
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of carbon concentration on high-hardness plasma-polymer-fluorocarbon film deposited by mid-range frequency sputtering.
    Kim SH; Kim M; Um MS; Choi WJ; Lee JH; Yang YS; Lee SJ
    Sci Rep; 2019 Jul; 9(1):10664. PubMed ID: 31337795
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of Electrochemical Performance with Dispersion Degree of CNTs in Electrode According to Ultrasonication Process and Slurry Viscosity for Lithium-Ion Battery.
    Choi J; Lee C; Park S; Embleton TJ; Ko K; Jo M; Saleem Saqib K; Yun J; Jo M; Son Y; Oh P
    Nanomaterials (Basel); 2022 Dec; 12(23):. PubMed ID: 36500894
    [TBL] [Abstract][Full Text] [Related]  

  • 13. PSi@SiOx/Nano-Ag composite derived from silicon cutting waste as high-performance anode material for Li-ion batteries.
    Xi F; Zhang Z; Hu Y; Li S; Ma W; Chen X; Wan X; Chong C; Luo B; Wang L
    J Hazard Mater; 2021 Jul; 414():125480. PubMed ID: 33647610
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-Area-Capacity Cathode by Ultralong Carbon Nanotubes for Secondary Binder-Assisted Dry Coating Technology.
    Wang J; Shao D; Fan Z; Xu C; Dou H; Xu M; Ding B; Zhang X
    ACS Appl Mater Interfaces; 2024 May; 16(20):26209-26216. PubMed ID: 38733341
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Polyethylene Oxide as a Multifunctional Binder for High-Performance Ternary Layered Cathodes.
    Mo J; Zhang D; Sun M; Liu L; Hu W; Jiang B; Chu L; Li M
    Polymers (Basel); 2021 Nov; 13(22):. PubMed ID: 34833291
    [TBL] [Abstract][Full Text] [Related]  

  • 16. P-Doped SiO
    Im J; Kwon JD; Kim DH; Yoon S; Cho KY
    Small Methods; 2022 Mar; 6(3):e2101052. PubMed ID: 35312227
    [TBL] [Abstract][Full Text] [Related]  

  • 17. One-Step Low-Temperature Molten Salt Synthesis of Two-Dimensional Si@SiO
    Liu Q; Hu X; Liu Y; Wen Z
    ACS Appl Mater Interfaces; 2020 Dec; 12(50):55844-55855. PubMed ID: 33259194
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improvement of the Cycling Performance and Thermal Stability of Lithium-Ion Cells by Double-Layer Coating of Cathode Materials with Al₂O₃ Nanoparticles and Conductive Polymer.
    Lee YS; Shin WK; Kannan AG; Koo SM; Kim DW
    ACS Appl Mater Interfaces; 2015 Jul; 7(25):13944-51. PubMed ID: 26083766
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hollow-structure engineering of a silicon-carbon anode for ultra-stable lithium-ion batteries.
    Liu H; Chen Y; Jiang B; Zhao Y; Guo X; Ma T
    Dalton Trans; 2020 May; 49(17):5669-5676. PubMed ID: 32292976
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Long-term Cyclability of Substoichiometric Silicon Nitride Thin Film Anodes for Li-ion Batteries.
    Ulvestad A; Andersen HF; Mæhlen JP; Prytz Ø; Kirkengen M
    Sci Rep; 2017 Oct; 7(1):13315. PubMed ID: 29042626
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.