BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 38160326)

  • 1. Dual-Proton Conductor for Fuel Cells with Flexible Operational Temperature.
    Li W; Liu W; Jia W; Zhang J; Zhang Q; Zhang Z; Zhang J; Li Y; Liu Y; Wang H; Xiang Y; Lu S
    Adv Mater; 2024 Apr; 36(14):e2310584. PubMed ID: 38160326
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Poly(2,5-benzimidazole)-Grafted Graphene Oxide as an Effective Proton Conductor for Construction of Nanocomposite Proton Exchange Membrane.
    Qiu X; Ueda M; Hu H; Sui Y; Zhang X; Wang L
    ACS Appl Mater Interfaces; 2017 Sep; 9(38):33049-33058. PubMed ID: 28872297
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Anhydrous phosphoric Acid functionalized sintered mesoporous silica nanocomposite proton exchange membranes for fuel cells.
    Zeng J; He B; Lamb K; De Marco R; Shen PK; Jiang SP
    ACS Appl Mater Interfaces; 2013 Nov; 5(21):11240-8. PubMed ID: 24125494
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phosphoric-Acid Retention in High-Temperature Proton-Exchange Membranes.
    Tang H; Gao J; Wang Y; Li N; Geng K
    Chemistry; 2022 Dec; 28(70):e202202064. PubMed ID: 36062406
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis and Properties of Phosphoric-Acid-Doped Polybenzimidazole with Hyperbranched Cross-Linkers Decorated with Imidazolium Groups as High-Temperature Proton Exchange Membranes.
    Gao C; Hu M; Wang L; Wang L
    Polymers (Basel); 2020 Feb; 12(3):. PubMed ID: 32120782
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Highly Conductive Polybenzimidazole Membranes at Low Phosphoric Acid Uptake with Excellent Fuel Cell Performances by Constructing Long-Range Continuous Proton Transport Channels Using a Metal-Organic Framework (UIO-66).
    Chen J; Wang L; Wang L
    ACS Appl Mater Interfaces; 2020 Sep; 12(37):41350-41358. PubMed ID: 32804468
    [TBL] [Abstract][Full Text] [Related]  

  • 7. PAF-6 Doped with Phosphoric Acid through Alkaline Nitrogen Atoms Boosting High-Temperature Proton-Exchange Membranes for High Performance of Fuel Cells.
    Wang L; Wang Y; Li Z; Li T; Zhang R; Li J; Liu B; Lv Z; Cai W; Sun S; Hu W; Lu Y; Zhu G
    Adv Mater; 2023 Aug; 35(33):e2303535. PubMed ID: 37358077
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intermediate temperature proton conductors for PEM fuel cells based on phosphonic acid as protogenic group: a progress report.
    Steininger H; Schuster M; Kreuer KD; Kaltbeitzel A; Bingöl B; Meyer WH; Schauff S; Brunklaus G; Maier J; Spiess HW
    Phys Chem Chem Phys; 2007 Apr; 9(15):1764-73. PubMed ID: 17415487
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A proton conductor electrolyte based on molten CsH
    Chen X; Zhang Y; Ribeiorinha P; Li H; Kong X; Boaventura M
    RSC Adv; 2018 Jan; 8(10):5225-5232. PubMed ID: 35542448
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Advancement toward Polymer Electrolyte Membrane Fuel Cells at Elevated Temperatures.
    Zhang J; Aili D; Lu S; Li Q; Jiang SP
    Research (Wash D C); 2020; 2020():9089405. PubMed ID: 32566932
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Grafting of Amine End-Functionalized Side-Chain Polybenzimidazole Acid-Base Membrane with Enhanced Phosphoric Acid Retention Ability for High-Temperature Proton Exchange Membrane Fuel Cells.
    Liu G; Pan H; Zhao S; Wang Y; Tang H; Zhang H
    Molecules; 2024 Jan; 29(2):. PubMed ID: 38257253
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nonhumidified intermediate temperature fuel cells using protic ionic liquids.
    Lee SY; Ogawa A; Kanno M; Nakamoto H; Yasuda T; Watanabe M
    J Am Chem Soc; 2010 Jul; 132(28):9764-73. PubMed ID: 20578771
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metal-Organic Framework-Derived N-Doped Porous Carbon for a Superprotonic Conductor at above 100 °C.
    Ren Q; Chen Y; Kong YR; Zhang J; Luo HB; Liu Y; Zou Y; Ren XM
    Inorg Chem; 2022 Dec; 61(49):20057-20063. PubMed ID: 36455074
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Achieving 1060 mW cm
    Lin J; Wang P; Bin J; Wang L
    Small; 2024 Feb; ():e2311767. PubMed ID: 38369969
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Construction of Successive Proton Conduction Channels to Accelerate the Proton Conduction Process in Flexible Proton Exchange Membranes.
    Li Q; Song D; Gao W; Wu D; Zhang N; Gao X; Che Q
    ACS Appl Mater Interfaces; 2024 Mar; 16(10):12686-12696. PubMed ID: 38422459
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Surface Acidity Dictates Proton Transport in WO
    Yang Y; Zhou X; Qu D; Liu D; Xie Z; Li J; Tang H
    Langmuir; 2023 Jan; 39(1):453-460. PubMed ID: 36580659
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Construction of Stable Wide-Temperature-Range Proton Exchange Membranes by Incorporating a Carbonized Metal-Organic Frame into Polybenzimidazoles and Polyacrylamide Hydrogels.
    Yin B; Liang R; Liang X; Fu D; Wang L; Sun G
    Small; 2021 Oct; 17(43):e2103214. PubMed ID: 34590404
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Novel High Temperature Fuel Cell Proton Exchange Membrane with Nanoscale Phase Separation Structure Based on Crosslinked Polybenzimidazole with Poly(vinylbenzyl chloride).
    Qu E; Xiao M; Han D; Huang S; Huang Z; Liu W; Wang S; Meng Y
    Nanomaterials (Basel); 2023 Jan; 13(2):. PubMed ID: 36678019
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhancing Performance and Stability of High-Temperature Proton Exchange Membranes through Multiwalled Carbon Nanotube Incorporation into Self-Cross-Linked Fluorenone-Containing Polybenzimidazole.
    Huang J; Wei G; Wu A; Liu D; Wang L; Luo J
    ACS Appl Mater Interfaces; 2024 May; 16(20):25994-26003. PubMed ID: 38739746
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Critical Review of Electrolytes for Advanced Low- and High-Temperature Polymer Electrolyte Membrane Fuel Cells.
    Javed A; Palafox Gonzalez P; Thangadurai V
    ACS Appl Mater Interfaces; 2023 Jun; 15(25):29674-29699. PubMed ID: 37326582
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.