BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 38160746)

  • 21. Enhanced Low Molecular Weight Poly-γ-Glutamic Acid Production in Recombinant Bacillus subtilis 1A751 with Zinc Ion.
    Jiang S; Fan L; Zhao M; Qiu Y; Zhao L
    Appl Biochem Biotechnol; 2019 Oct; 189(2):411-423. PubMed ID: 31037584
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Engineering of a newly isolated Bacillus tequilensis BL01 for poly-γ-glutamic acid production from citric acid.
    Wang D; Fu X; Zhou D; Gao J; Bai W
    Microb Cell Fact; 2022 Dec; 21(1):276. PubMed ID: 36581997
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Involvement of Peptide Epimerization in Poly-γ-glutamic Acid Biosynthesis.
    Ogasawara Y; Shigematsu M; Sato S; Kato H; Dairi T
    Org Lett; 2019 Jun; 21(11):3972-3975. PubMed ID: 31090431
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Simultaneous production of poly-γ-glutamic acid and 2,3-butanediol by a newly isolated Bacillus subtilis CS13.
    Wang D; Kim H; Lee S; Kim DH; Joe MH
    Appl Microbiol Biotechnol; 2020 Aug; 104(16):7005-7021. PubMed ID: 32642915
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Intracellular synthesis of glutamic acid in Bacillus methylotrophicus SK19.001, a glutamate-independent poly(γ-glutamic acid)-producing strain.
    Peng Y; Zhang T; Mu W; Miao M; Jiang B
    J Sci Food Agric; 2016 Jan; 96(1):66-72. PubMed ID: 26112100
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Production of ultra-high-molecular-weight poly-γ-glutamic acid by a newly isolated Bacillus subtilis strain and genomic and transcriptomic analyses.
    Zeng W; Liu Y; Shu L; Guo Y; Wang L; Liang Z
    Biotechnol J; 2024 Apr; 19(4):e2300614. PubMed ID: 38581093
    [TBL] [Abstract][Full Text] [Related]  

  • 27. γ-PGA Fermentation by Bacillus subtilis PG-001 with Glucose Feedback Control pH-stat Strategy.
    Wang JQ; Zhao J; Xia JY
    Appl Biochem Biotechnol; 2022 May; 194(5):1871-1880. PubMed ID: 34989966
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Metabolic engineering of Corynebacterium glutamicum for enhanced production of 5-aminovaleric acid.
    Shin JH; Park SH; Oh YH; Choi JW; Lee MH; Cho JS; Jeong KJ; Joo JC; Yu J; Park SJ; Lee SY
    Microb Cell Fact; 2016 Oct; 15(1):174. PubMed ID: 27717386
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Purification and characterization of gamma poly glutamic acid from newly Bacillus licheniformis NRC20.
    Tork SE; Aly MM; Alakilli SY; Al-Seeni MN
    Int J Biol Macromol; 2015 Mar; 74():382-91. PubMed ID: 25572721
    [TBL] [Abstract][Full Text] [Related]  

  • 30. High-level production of poly-γ-glutamic acid from untreated molasses by Bacillus siamensis IR10.
    Wang D; Kim H; Lee S; Kim DH; Joe MH
    Microb Cell Fact; 2020 May; 19(1):101. PubMed ID: 32398084
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Enhanced Production of Poly-γ-glutamic Acid by Bacillus licheniformis TISTR 1010 with Environmental Controls.
    Kongklom N; Shi Z; Chisti Y; Sirisansaneeyakul S
    Appl Biochem Biotechnol; 2017 Jul; 182(3):990-999. PubMed ID: 28013429
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Selection of an Effective Indicator for Rapid Detection of Microorganisms Producing γ-Polyglutamic Acid and Its Biosynthesis Under Submerged Fermentation Conditions Using Bacillus methylotrophicus.
    Chatterjee PM; Datta S; Tiwari DP; Raval R; Dubey AK
    Appl Biochem Biotechnol; 2018 May; 185(1):270-288. PubMed ID: 29134509
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effect of glucose on poly-γ-glutamic acid metabolism in Bacillus licheniformis.
    Yu W; Chen Z; Ye H; Liu P; Li Z; Wang Y; Li Q; Yan S; Zhong CJ; He N
    Microb Cell Fact; 2017 Feb; 16(1):22. PubMed ID: 28178965
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Efficient production of poly-gamma-glutamic acid by Bacillus subtilis ZJU-7.
    Shi F; Xu Z; Cen P
    Appl Biochem Biotechnol; 2006 Jun; 133(3):271-82. PubMed ID: 16720907
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Characterization of a Regulator pgsR on Endogenous Plasmid p2Sip and Its Complementation for Poly(γ-glutamic acid) Accumulation in Bacillus amyloliquefaciens.
    Qiu Y; Zhu Y; Zhang Y; Sha Y; Xu Z; Li S; Feng X; Xu H
    J Agric Food Chem; 2019 Apr; 67(13):3711-3722. PubMed ID: 30866628
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Chromosomal editing of Corynebacterium glutamicum ATCC 13032 to produce gamma-aminobutyric acid.
    Yao C; Shi F; Wang X
    Biotechnol Appl Biochem; 2023 Feb; 70(1):7-21. PubMed ID: 35106837
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Systematic engineering of Bacillus amyloliquefaciens for efficient production of poly-γ-glutamic acid from crude glycerol.
    Zhu Y; Du S; Yan Y; Pan F; Wang R; Li S; Xu H; Luo Z
    Bioresour Technol; 2022 Sep; 359():127382. PubMed ID: 35644456
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Enhanced Production of Poly-γ-glutamic Acid by Bacillus subtilis Using Stage-controlled Fermentation and Viscosity Reduction Strategy.
    Guo Y; Liu Y; Yang Z; Chen G; Liang Z; Zeng W
    Appl Biochem Biotechnol; 2024 Mar; 196(3):1527-1543. PubMed ID: 37432638
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Heterologous synthesis of poly-γ-glutamic acid enhanced drought resistance in maize (Zea mays L.).
    Ma H; Li C; Xiao N; Liu J; Li P; Xu J; Yan J; Zhang S; Xia T
    Int J Biol Macromol; 2024 Jun; 273(Pt 2):133179. PubMed ID: 38880448
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Improvement of Bacillus subtilis for poly-γ-glutamic acid production by genome shuffling.
    Zeng W; Chen G; Wu H; Wang J; Liu Y; Guo Y; Liang Z
    Microb Biotechnol; 2016 Nov; 9(6):824-833. PubMed ID: 27562078
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.