BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 38161041)

  • 1. Fatiguing unilateral handgrip influences force during force-matching task with lower limb.
    Matsuura R
    Physiol Behav; 2024 Mar; 275():114455. PubMed ID: 38161041
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of fatiguing unilateral plantar flexions on corticospinal and transcallosal inhibition in the primary motor hand area.
    Matsuura R; Ogata T
    J Physiol Anthropol; 2015 Feb; 34(1):4. PubMed ID: 25857538
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of sustained unilateral handgrip on corticomotor excitability in both knee extensor muscles.
    Matsuura R; Yunoki T; Shirakawa K; Ohtsuka Y
    Eur J Appl Physiol; 2020 Aug; 120(8):1865-1879. PubMed ID: 32533244
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Focal depression of cortical excitability induced by fatiguing muscle contraction: a transcranial magnetic stimulation study.
    McKay WB; Tuel SM; Sherwood AM; Stokić DS; Dimitrijević MR
    Exp Brain Res; 1995; 105(2):276-82. PubMed ID: 7498380
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of fatigue on corticospinal excitability of the human knee extensors.
    Kennedy DS; McNeil CJ; Gandevia SC; Taylor JL
    Exp Physiol; 2016 Dec; 101(12):1552-1564. PubMed ID: 27652591
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Paired-pulse rTMS at trans-synaptic intervals increases corticomotor excitability and reduces the rate of force loss during a fatiguing exercise of the hand.
    Benwell NM; Mastaglia FL; Thickbroom GW
    Exp Brain Res; 2006 Nov; 175(4):626-32. PubMed ID: 16783555
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Decline in voluntary activation contributes to reduced maximal performance of fatigued human lower limb muscles.
    Mileva KN; Sumners DP; Bowtell JL
    Eur J Appl Physiol; 2012 Dec; 112(12):3959-70. PubMed ID: 22434254
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fatiguing intermittent lower limb exercise influences corticospinal and corticocortical excitability in the nonexercised upper limb.
    Takahashi K; Maruyama A; Hirakoba K; Maeda M; Etoh S; Kawahira K; Rothwell JC
    Brain Stimul; 2011 Apr; 4(2):90-6. PubMed ID: 21511209
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of posture and coactivation on corticomotor excitability of ankle muscles.
    Kesar TM; Eicholtz S; Lin BJ; Wolf SL; Borich MR
    Restor Neurol Neurosci; 2018; 36(1):131-146. PubMed ID: 29439363
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fatiguing exercise attenuates pain-induced corticomotor excitability.
    Hoeger Bement MK; Weyer A; Hartley S; Yoon T; Hunter SK
    Neurosci Lett; 2009 Mar; 452(2):209-13. PubMed ID: 19383441
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Knee extensors neuromuscular fatigue changes the corticospinal pathway excitability in biceps brachii muscle.
    Aboodarda SJ; Šambaher N; Millet GY; Behm DG
    Neuroscience; 2017 Jan; 340():477-486. PubMed ID: 27826108
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Agonist-Antagonist Coactivation Enhances Corticomotor Excitability of Ankle Muscles.
    Kesar TM; Tan A; Eicholtz S; Baker K; Xu J; Anderson JT; Wolf SL; Borich MR
    Neural Plast; 2019; 2019():5190671. PubMed ID: 31565049
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Short-interval cortical inhibition and corticomotor excitability with fatiguing hand exercise: a central adaptation to fatigue?
    Benwell NM; Sacco P; Hammond GR; Byrnes ML; Mastaglia FL; Thickbroom GW
    Exp Brain Res; 2006 Apr; 170(2):191-8. PubMed ID: 16328285
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Contralateral muscle activity and fatigue in the human first dorsal interosseous muscle.
    Post M; Bayrak S; Kernell D; Zijdewind I
    J Appl Physiol (1985); 2008 Jul; 105(1):70-82. PubMed ID: 18450978
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Changes in corticospinal excitability during bilateral and unilateral lower-limb force control tasks.
    Yamaguchi A; Sasaki A; Masugi Y; Milosevic M; Nakazawa K
    Exp Brain Res; 2020 Sep; 238(9):1977-1987. PubMed ID: 32591958
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Asymmetrical modulation of corticospinal excitability in the contracting and resting contralateral wrist flexors during unilateral shortening, lengthening and isometric contractions.
    Uematsu A; Obata H; Endoh T; Kitamura T; Hortobágyi T; Nakazawa K; Suzuki S
    Exp Brain Res; 2010 Sep; 206(1):59-69. PubMed ID: 20730420
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhanced corticomotor excitability with dynamic fatiguing exercise of the lower limb in multiple sclerosis.
    Thickbroom GW; Sacco P; Faulkner DL; Kermode AG; Mastaglia FL
    J Neurol; 2008 Jul; 255(7):1001-5. PubMed ID: 18338192
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanisms for the increased fatigability of the lower limb in people with type 2 diabetes.
    Senefeld J; Magill SB; Harkins A; Harmer AR; Hunter SK
    J Appl Physiol (1985); 2018 Aug; 125(2):553-566. PubMed ID: 29596017
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Estimation of handgrip force using frequency-band technique during fatiguing muscle contraction.
    Soo Y; Sugi M; Yokoi H; Arai T; Nishino M; Kato R; Nakamura T; Ota J
    J Electromyogr Kinesiol; 2010 Oct; 20(5):888-95. PubMed ID: 19837604
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differential corticomotor mechanisms of ankle motor control in post stroke individuals with and without motor evoked potentials.
    Lim H; Madhavan S
    Brain Res; 2020 Jul; 1739():146833. PubMed ID: 32298662
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.