These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 38161041)

  • 21. Changes in corticomotor excitability after fatiguing muscle contractions.
    Sacco P; Thickbroom GW; Byrnes ML; Mastaglia FL
    Muscle Nerve; 2000 Dec; 23(12):1840-6. PubMed ID: 11102907
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Different effects of fatiguing exercise on corticospinal and transcallosal excitability in human hand area motor cortex.
    Edgley SA; Winter AP
    Exp Brain Res; 2004 Dec; 159(4):530-6. PubMed ID: 15249989
    [TBL] [Abstract][Full Text] [Related]  

  • 23. People with multiple sclerosis have reduced TMS-evoked motor cortical output compared with healthy individuals during fatiguing submaximal contractions.
    Brotherton EJ; Sabapathy S; Mckeown DJ; Kavanagh JJ
    J Neurophysiol; 2022 Jul; 128(1):105-117. PubMed ID: 35675447
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Impaired facilitation of motor evoked potentials in incomplete spinal cord injury.
    Diehl P; Kliesch U; Dietz V; Curt A
    J Neurol; 2006 Jan; 253(1):51-7. PubMed ID: 16044213
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effect of muscle length in a handgrip task on corticomotor excitability of extrinsic and intrinsic hand muscles under resting and submaximal contraction conditions.
    Moraes VH; Vargas CD; Ramalho BL; Matsuda RH; Souza VH; Imbiriba LA; Garcia MAC
    Scand J Med Sci Sports; 2023 Dec; 33(12):2524-2533. PubMed ID: 37642219
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Real-time changes in corticospinal excitability related to motor imagery of a force control task.
    Tatemoto T; Tsuchiya J; Numata A; Osawa R; Yamaguchi T; Tanabe S; Kondo K; Otaka Y; Sugawara K
    Behav Brain Res; 2017 Sep; 335():185-190. PubMed ID: 28827129
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Fatiguing handgrip exercise alters maximal force-generating capacity of plantar-flexors.
    Kennedy A; Hug F; Sveistrup H; Guével A
    Eur J Appl Physiol; 2013 Mar; 113(3):559-66. PubMed ID: 22833010
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Low-level voluntary input enhances corticospinal excitability during ankle dorsiflexion neuromuscular electrical stimulation in healthy young adults.
    Yamaguchi A; Sasaki A; Popovic MR; Milosevic M; Nakazawa K
    PLoS One; 2023; 18(3):e0282671. PubMed ID: 36888637
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The short-term recovery of corticomotor responses in elbow flexors.
    Aboodarda SJ; Fan S; Coates K; Millet GY
    BMC Neurosci; 2019 Mar; 20(1):9. PubMed ID: 30871475
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Supraspinal fatigue impedes recovery from a low-intensity sustained contraction in old adults.
    Yoon T; Schlinder-Delap B; Keller ML; Hunter SK
    J Appl Physiol (1985); 2012 Mar; 112(5):849-58. PubMed ID: 22174405
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Corticospinal excitability and somatosensory information processing of the lower limb muscle during upper limb voluntary or electrically induced muscle contractions.
    Kato T; Kaneko N; Sasaki A; Endo N; Yuasa A; Milosevic M; Watanabe K; Nakazawa K
    Eur J Neurosci; 2022 Apr; 55(7):1810-1824. PubMed ID: 35274383
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Cortical and segmental excitability during fatiguing contractions of the soleus muscle in humans.
    Iguchi M; Shields RK
    Clin Neurophysiol; 2012 Feb; 123(2):335-43. PubMed ID: 21802985
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Short-latency afferent inhibition is reduced in people with multiple sclerosis during fatiguing muscle contractions.
    Brotherton EJ; Sabapathy S; Dempsey LM; Kavanagh JJ
    Eur J Neurosci; 2024 Apr; 59(8):2087-2101. PubMed ID: 38234172
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Modulation of lower limb muscle corticospinal excitability during various types of motor imagery.
    Ishikawa K; Kaneko N; Sasaki A; Nakazawa K
    Neurosci Lett; 2024 Jan; 818():137551. PubMed ID: 37926294
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Changes in corticospinal excitability evoked by common peroneal nerve stimulation depend on stimulation frequency.
    Mang CS; Lagerquist O; Collins DF
    Exp Brain Res; 2010 May; 203(1):11-20. PubMed ID: 20217400
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effects of caffeine on neuromuscular function in a non-fatigued state and during fatiguing exercise.
    Mesquita RNO; Cronin NJ; Kyröläinen H; Hintikka J; Avela J
    Exp Physiol; 2020 Apr; 105(4):690-706. PubMed ID: 32092208
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Decreased supraspinal control and neuromuscular function controlling the ankle joint in athletes with chronic ankle instability.
    Nanbancha A; Tretriluxana J; Limroongreungrat W; Sinsurin K
    Eur J Appl Physiol; 2019 Sep; 119(9):2041-2052. PubMed ID: 31321512
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The response to paired motor cortical stimuli is abolished at a spinal level during human muscle fatigue.
    McNeil CJ; Martin PG; Gandevia SC; Taylor JL
    J Physiol; 2009 Dec; 587(Pt 23):5601-12. PubMed ID: 19805743
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Potentiating and fatiguing cortical reactions in a voluntary fatigue test of a human hand muscle.
    Zijdewind I; Zwarts MJ; Kernell D
    Exp Brain Res; 2000 Feb; 130(4):529-32. PubMed ID: 10717794
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Interlimb neural interactions in corticospinal and spinal reflex circuits during preparation and execution of isometric elbow flexion.
    Sasaki A; Kaneko N; Masugi Y; Milosevic M; Nakazawa K
    J Neurophysiol; 2020 Sep; 124(3):652-667. PubMed ID: 32697605
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.