These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 38161216)

  • 1. Effective Long Afterglow Amplification Induced by Surface Coordination Interaction.
    Wang Y; Li Q; Qu L; Huang J; Zhu Y; Li C; Chen Q; Zheng Y; Yang C
    Adv Sci (Weinh); 2024 Mar; 11(11):e2306942. PubMed ID: 38161216
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recent advances in the design of afterglow materials: mechanisms, structural regulation strategies and applications.
    Yang X; Waterhouse GIN; Lu S; Yu J
    Chem Soc Rev; 2023 Nov; 52(22):8005-8058. PubMed ID: 37880991
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phosphorescence Energy Transfer: Ambient Afterglow Fluorescence from Water-Processable and Purely Organic Dyes via Delayed Sensitization.
    Kuila S; George SJ
    Angew Chem Int Ed Engl; 2020 Jun; 59(24):9393-9397. PubMed ID: 32142188
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Full-color, time-valve controllable and Janus-type long-persistent luminescence from all-inorganic halide perovskites.
    Chen T; Yan D
    Nat Commun; 2024 Jun; 15(1):5281. PubMed ID: 38902239
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermally Activated Long Persistent Luminescence of Organic Inorganic Metal Halides.
    Gong H; Yu H; Zhang Y; Feng L; Tian Y; Cui G; Fu H
    Angew Chem Int Ed Engl; 2023 Mar; 62(14):e202219085. PubMed ID: 36738174
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Manipulation of Triplet Excited States in Two-Component Systems for High-Performance Organic Afterglow Materials.
    Li J; Wang G; Chen X; Li X; Wu M; Yuan S; Zou Y; Wang X; Zhang K
    Chemistry; 2022 Jun; 28(35):e202200852. PubMed ID: 35441409
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-Temperature and Dynamic RGB (Red-Green-Blue) Long-Persistent Luminescence in an Anti-Kasha Organic Compound.
    Zhang QS; Wang SC; Xiong XH; Fu PY; Zhang XD; Fan YN; Pan M
    Angew Chem Int Ed Engl; 2022 Aug; 61(32):e202205556. PubMed ID: 35661372
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Persistent phosphors for luminous paints: A review.
    Thejo Kalyani N; Jain A; Dhoble SJ
    Luminescence; 2022 Apr; 37(4):524-542. PubMed ID: 35102701
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Single-Mode-Tuned Tricolor Emissions of Upconversion/Afterglow Hybrids for Anticounterfeiting Applications.
    Hu Y; Li S; Yu S; Chen S; Yan Y; Liu Y; Chen Y; Chen C; Shao Q; Liu Y
    Nanomaterials (Basel); 2022 Sep; 12(18):. PubMed ID: 36144911
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multiple Coordination of Chromium Ion Luminescence: A Strategy for Designing Ultra-broadband NIR Long Persistent Luminescent Materials.
    Ding S; Feng P; Cao J; Ma X; Wang Y
    ACS Appl Mater Interfaces; 2022 Oct; 14(39):44622-44631. PubMed ID: 36129520
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Blue Long Afterglow and Ultra Broadband Vis-NIR Emission from All-Inorganic Copper-Doped Silver Halide Single Crystals.
    Wang S; Liu R; Li J; Meng C; Liu J; Chen J; Cheng P; Wu K
    Angew Chem Int Ed Engl; 2024 Jun; 63(25):e202403927. PubMed ID: 38632085
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultralong-Lived Up-Conversional Room-Temperature Afterglow Materials with a Polyvinyl Alcohol Substrate.
    Zhou L; Wu B; Shi B; Zhu X; Shen S; Zhu L
    Polymers (Basel); 2022 Jun; 14(12):. PubMed ID: 35745990
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multicolor Afterglow from Carbon Dots: Preparation and Mechanism.
    Ran Z; Liu J; Zhuang J; Liu Y; Hu C
    Small Methods; 2024 Jan; 8(1):e2301013. PubMed ID: 37891712
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Narrowband Organic Afterglow via Phosphorescence Förster Resonance Energy Transfer for Multifunctional Applications.
    Zou X; Gan N; Dong M; Huo W; Lv A; Yao X; Yin C; Wang Z; Zhang Y; Chen H; Ma H; Gu L; An Z; Huang W
    Adv Mater; 2023 Sep; 35(36):e2210489. PubMed ID: 37390483
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Efficient Blue to Red Afterglow Tuning in a Binary Nanocomposite Plastic Film.
    Xia Y; Ou H; Li W; Han G; Li Z
    Nanomaterials (Basel); 2018 Apr; 8(4):. PubMed ID: 29677159
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The long rod-shaped Sr
    Hai O; Qin B; Xiao XN; Ren Q; Wu XL; Pei MK; Li J
    Luminescence; 2024 Feb; 39(2):e4695. PubMed ID: 38402879
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Molecular Engineering Strategy for Achieving Blue Phosphorescent Carbon Dots with Outstanding Efficiency above 50.
    Song Z; Shang Y; Lou Q; Zhu J; Hu J; Xu W; Li C; Chen X; Liu K; Shan CX; Bai X
    Adv Mater; 2023 Feb; 35(6):e2207970. PubMed ID: 36413559
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design of highly efficient deep-blue organic afterglow through guest sensitization and matrices rigidification.
    Xu S; Wang W; Li H; Zhang J; Chen R; Wang S; Zheng C; Xing G; Song C; Huang W
    Nat Commun; 2020 Sep; 11(1):4802. PubMed ID: 32968080
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tunable afterglow Ca
    Li L; Li P; Wu Y; Li J; Zhang X; Xu S; Zhang J
    Opt Lett; 2024 Jan; 49(2):294-297. PubMed ID: 38194551
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Purely Organic Fluorescence Afterglow: Visible-Light-Excitation, Inherent Mechanism, Tunable Color, and Practical Applications with Very Low Cost.
    Wang J; Yang Y; Li K; Zhang L; Li Z
    Angew Chem Int Ed Engl; 2023 Jul; 62(30):e202304020. PubMed ID: 37243538
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.