These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 38161241)

  • 1. High-efficiency extraction of target particles in viscoelastic contraction-expansion microchannels.
    Wu B; Liu S; Jiang D; Tang W
    Electrophoresis; 2024 Jul; 45(13-14):1233-1242. PubMed ID: 38161241
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Size-Based Separation of Particles and Cells Utilizing Viscoelastic Effects in Straight Microchannels.
    Liu C; Xue C; Chen X; Shan L; Tian Y; Hu G
    Anal Chem; 2015 Jun; 87(12):6041-8. PubMed ID: 25989347
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inertial microfluidics in contraction-expansion microchannels: A review.
    Jiang D; Ni C; Tang W; Huang D; Xiang N
    Biomicrofluidics; 2021 Jul; 15(4):041501. PubMed ID: 34262632
    [TBL] [Abstract][Full Text] [Related]  

  • 4. "From the Edge to the Center": Viscoelastic Migration of Particles and Cells in a Strongly Shear-Thinning Liquid Flowing in a Microchannel.
    Del Giudice F; Sathish S; D'Avino G; Shen AQ
    Anal Chem; 2017 Dec; 89(24):13146-13159. PubMed ID: 29083161
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High throughput single-cell and multiple-cell micro-encapsulation.
    Lagus TP; Edd JF
    J Vis Exp; 2012 Jun; (64):e4096. PubMed ID: 22733254
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inertial separation in a contraction-expansion array microchannel.
    Lee MG; Choi S; Park JK
    J Chromatogr A; 2011 Jul; 1218(27):4138-43. PubMed ID: 21176909
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhanced viscoelastic focusing of particle in microchannel.
    Fan LL; Zhao Z; Tao YY; Wu X; Yan Q; Zhe J; Zhao L
    Electrophoresis; 2020 Jun; 41(10-11):973-982. PubMed ID: 31900948
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Numerical investigation of ternary particle separation in a microchannel with a wall-mounted obstacle using dielectrophoresis.
    Derakhshan R; Bozorgzadeh A; Ramiar A
    J Chromatogr A; 2023 Aug; 1702():464079. PubMed ID: 37263054
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Elastic-inertial separation of microparticle in a gradually contracted microchannel.
    Tian ZZ; Gan CS; Fan LL; Wang JC; Zhao L
    Electrophoresis; 2022 Nov; 43(21-22):2217-2226. PubMed ID: 36084168
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microfluidic device for sheathless particle focusing and separation using a viscoelastic fluid.
    Nam J; Namgung B; Lim CT; Bae JE; Leo HL; Cho KS; Kim S
    J Chromatogr A; 2015 Aug; 1406():244-50. PubMed ID: 26122857
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improvement of size-based particle separation throughput in slanted spiral microchannel by modifying outlet geometry.
    Mihandoust A; Maleki-Jirsaraei N; Rouhani S; Safi S; Alizadeh M
    Electrophoresis; 2020 Mar; 41(5-6):353-359. PubMed ID: 32012295
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inertial microfluidics: Determining the effect of geometric key parameters on capture efficiency along with a feasibility evaluation for bone marrow cells sorting.
    Ghadiri MM; Hosseini SA; Sadatsakkak SA; Rajabpour A
    Biomed Microdevices; 2021 Aug; 23(3):41. PubMed ID: 34379212
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Three-dimensional hydrodynamic focusing with a single sheath flow in a single-layer microfluidic device.
    Lee MG; Choi S; Park JK
    Lab Chip; 2009 Nov; 9(21):3155-60. PubMed ID: 19823733
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Viscoelastic flow-focusing in microchannels: scaling properties of the particle radial distributions.
    Romeo G; D'Avino G; Greco F; Netti PA; Maffettone PL
    Lab Chip; 2013 Jul; 13(14):2802-7. PubMed ID: 23670133
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exploitation of elasto-inertial fluid flow for the separation of nano-sized particles: Simulating the isolation of extracellular vesicles.
    Pouraria H; Foudazi R; Houston JP
    Cytometry A; 2023 Oct; 103(10):786-795. PubMed ID: 37334483
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inertial microfluidics for continuous particle separation in spiral microchannels.
    Kuntaegowdanahalli SS; Bhagat AA; Kumar G; Papautsky I
    Lab Chip; 2009 Oct; 9(20):2973-80. PubMed ID: 19789752
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrokinetic particle entry into microchannels.
    Zhu J; Hu G; Xuan X
    Electrophoresis; 2012 Mar; 33(6):916-22. PubMed ID: 22528411
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Continuous particle separation in a microfluidic channel via standing surface acoustic waves (SSAW).
    Shi J; Huang H; Stratton Z; Huang Y; Huang TJ
    Lab Chip; 2009 Dec; 9(23):3354-9. PubMed ID: 19904400
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Continuous inertial focusing, ordering, and separation of particles in microchannels.
    Di Carlo D; Irimia D; Tompkins RG; Toner M
    Proc Natl Acad Sci U S A; 2007 Nov; 104(48):18892-7. PubMed ID: 18025477
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Investigation of viscoelastic focusing of particles and cells in a zigzag microchannel.
    Yuan D; Yadav S; Ta HT; Fallahi H; An H; Kashaninejad N; Ooi CH; Nguyen NT; Zhang J
    Electrophoresis; 2021 Nov; 42(21-22):2230-2237. PubMed ID: 34396540
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.