These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 38162227)

  • 1. Acoustophoresis of monodisperse oil droplets in water: Effect of symmetry breaking and non-resonance operation on oil trapping behavior.
    Bazyar H; Kandemir MH; Peper J; Andrade MAB; Bernassau AL; Schroën K; Lammertink RGH
    Biomicrofluidics; 2023 Dec; 17(6):064107. PubMed ID: 38162227
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microfluidic acoustophoretic force based low-concentration oil separation and detection from the environment.
    Wang H; Liu Z; Kim S; Koo C; Cho Y; Jang DY; Kim YJ; Han A
    Lab Chip; 2014 Mar; 14(5):947-56. PubMed ID: 24402640
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Toward optimal acoustophoretic microparticle manipulation by exploiting asymmetry.
    Tahmasebipour A; Friedrich L; Begley M; Bruus H; Meinhart C
    J Acoust Soc Am; 2020 Jul; 148(1):359. PubMed ID: 32752779
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Capillary-based, multifunctional manipulation of particles and fluids
    Pei Z; Tian Z; Yang S; Shen L; Hao N; Naquin TD; Li T; Sun L; Rong W; Huang TJ
    J Phys D Appl Phys; 2024 Aug; 57(30):. PubMed ID: 38800708
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimization Analysis of Particle Separation Parameters for a Standing Surface Acoustic Wave Acoustofluidic Chip.
    Han J; Hu H; Lei Y; Huang Q; Fu C; Gai C; Ning J
    ACS Omega; 2023 Jan; 8(1):311-323. PubMed ID: 36643460
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Continuous Particle Aggregation and Separation in Acoustofluidic Microchannels Driven by Standing Lamb Waves.
    Hsu JC; Chang CY
    Micromachines (Basel); 2022 Dec; 13(12):. PubMed ID: 36557473
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Quantitative Study of the Secondary Acoustic Radiation Force on Biological Cells during Acoustophoresis.
    Saeidi D; Saghafian M; Haghjooy Javanmard S; Wiklund M
    Micromachines (Basel); 2020 Jan; 11(2):. PubMed ID: 32019234
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Constant-Power versus Constant-Voltage Actuation in Frequency Sweeps for Acoustofluidic Applications.
    Lickert F; Bruus H; Rossi M
    Micromachines (Basel); 2022 Nov; 13(11):. PubMed ID: 36363908
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recent advances in microfluidic actuation and micro-object manipulation via surface acoustic waves.
    Destgeer G; Sung HJ
    Lab Chip; 2015 Jul; 15(13):2722-38. PubMed ID: 26016538
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ultrasonic surface acoustic wave-assisted separation of microscale droplets with varying acoustic impedance.
    Ali M; Park J
    Ultrason Sonochem; 2023 Feb; 93():106305. PubMed ID: 36706667
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thin Film PZT-Based PMUT Arrays for Deterministic Particle Manipulation.
    Cheng CY; Dangi A; Ren L; Tiwari S; Benoit RR; Qiu Y; Lay HS; Agrawal S; Pratap R; Kothapalli SR; Mallouk TE; Cochran S; Trolier-Mckinstry S
    IEEE Trans Ultrason Ferroelectr Freq Control; 2019 Oct; 66(10):1606-1615. PubMed ID: 31283502
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Acoustophoresis of a resonant elastic microparticle in a viscous fluid medium.
    Tahmasebipour A; Begley M; Meinhart C
    J Acoust Soc Am; 2022 May; 151(5):3083. PubMed ID: 35649929
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thin film piezoelectrics for bulk acoustic wave (BAW) acoustophoresis.
    Reichert P; Deshmukh D; Lebovitz L; Dual J
    Lab Chip; 2018 Dec; 18(23):3655-3667. PubMed ID: 30374500
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Efficient coupling of acoustic modes in microfluidic channel devices.
    Bora M; Shusteff M
    Lab Chip; 2015 Aug; 15(15):3192-202. PubMed ID: 26118358
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Particle separation in microfluidics using different modal ultrasonic standing waves.
    Zhang Y; Chen X
    Ultrason Sonochem; 2021 Jul; 75():105603. PubMed ID: 34044322
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Acoustophoresis in polymer-based microfluidic devices: Modeling and experimental validation.
    Lickert F; Ohlin M; Bruus H; Ohlsson P
    J Acoust Soc Am; 2021 Jun; 149(6):4281. PubMed ID: 34241446
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of Acoustophoretic and Dielectrophoretic Forces for Droplet Injection in Droplet-Based Microfluidic Devices.
    De Lora JA; Aubermann F; Frey C; Jahnke T; Wang Y; Weber S; Platzman I; Spatz JP
    ACS Omega; 2024 Apr; 9(14):16097-16105. PubMed ID: 38617618
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microfluidic droplet handling by bulk acoustic wave (BAW) acoustophoresis.
    Leibacher I; Reichert P; Dual J
    Lab Chip; 2015 Jul; 15(13):2896-905. PubMed ID: 26037897
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Theory of acoustophoresis in counterpropagating surface acoustic wave fields for particle separation.
    Liu Z; Xu G; Ni Z; Chen X; Guo X; Tu J; Zhang D
    Phys Rev E; 2021 Mar; 103(3-1):033104. PubMed ID: 33862812
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Flexural wave-based soft attractor walls for trapping microparticles and cells.
    Aghakhani A; Cetin H; Erkoc P; Tombak GI; Sitti M
    Lab Chip; 2021 Feb; 21(3):582-596. PubMed ID: 33355319
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.