These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 38162643)

  • 1. Preclinical evaluation of the efficacy of an antibody to human SIRPα for cancer immunotherapy in humanized mouse models.
    Saito Y; Iida-Norita R; Afroj T; Refaat A; Hazama D; Komori S; Ohata S; Takai T; Oduori OS; Kotani T; Funakoshi Y; Koma YI; Murata Y; Yakushijin K; Matsuoka H; Minami H; Yokozaki H; Manz MG; Matozaki T
    Front Immunol; 2023; 14():1294814. PubMed ID: 38162643
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Anti-human SIRPα antibody is a new tool for cancer immunotherapy.
    Murata Y; Tanaka D; Hazama D; Yanagita T; Saito Y; Kotani T; Oldenborg PA; Matozaki T
    Cancer Sci; 2018 May; 109(5):1300-1308. PubMed ID: 29473266
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Targeting the myeloid checkpoint receptor SIRPα potentiates innate and adaptive immune responses to promote anti-tumor activity.
    Kuo TC; Chen A; Harrabi O; Sockolosky JT; Zhang A; Sangalang E; Doyle LV; Kauder SE; Fontaine D; Bollini S; Han B; Fu YX; Sim J; Pons J; Wan HI
    J Hematol Oncol; 2020 Nov; 13(1):160. PubMed ID: 33256806
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cancer immunotherapy targeting the CD47/SIRPα axis.
    Weiskopf K
    Eur J Cancer; 2017 May; 76():100-109. PubMed ID: 28286286
    [TBL] [Abstract][Full Text] [Related]  

  • 5. BYON4228 is a pan-allelic antagonistic SIRPα antibody that potentiates destruction of antibody-opsonized tumor cells and lacks binding to SIRPγ on T cells.
    van Helden MJ; Zwarthoff SA; Arends RJ; Reinieren-Beeren IMJ; Paradé MCBC; Driessen-Engels L; de Laat-Arts K; Damming D; Santegoeds-Lenssen EWH; van Kuppeveld DWJ; Lodewijks I; Olsman H; Matlung HL; Franke K; Mattaar-Hepp E; Stokman MEM; de Wit B; Glaudemans DHRF; van Wijk DEJW; Joosten-Stoffels L; Schouten J; Boersema PJ; van der Vleuten M; Sanderink JWH; Kappers WA; van den Dobbelsteen D; Timmers M; Ubink R; Rouwendal GJA; Verheijden G; van der Lee MMC; Dokter WHA; van den Berg TK
    J Immunother Cancer; 2023 Apr; 11(4):. PubMed ID: 37068796
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Preclinical characterization of the novel anti-SIRPα antibody BR105 that targets the myeloid immune checkpoint.
    Wu ZH; Li N; Mei XF; Chen J; Wang XZ; Guo TT; Chen G; Nie L; Chen Y; Jiang MZ; Wang JT; Wang HB
    J Immunother Cancer; 2022 Mar; 10(3):. PubMed ID: 35256517
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Anticancer efficacy of monotherapy with antibodies to SIRPα/SIRPβ1 mediated by induction of antitumorigenic macrophages.
    Sakamoto M; Murata Y; Tanaka D; Kakuchi Y; Okamoto T; Hazama D; Saito Y; Kotani T; Ohnishi H; Miyasaka M; Fujisawa M; Matozaki T
    Proc Natl Acad Sci U S A; 2022 Jan; 119(1):. PubMed ID: 34949714
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functional characterization of the selective pan-allele anti-SIRPα antibody ADU-1805 that blocks the SIRPα-CD47 innate immune checkpoint.
    Voets E; Paradé M; Lutje Hulsik D; Spijkers S; Janssen W; Rens J; Reinieren-Beeren I; van den Tillaart G; van Duijnhoven S; Driessen L; Habraken M; van Zandvoort P; Kreijtz J; Vink P; van Elsas A; van Eenennaam H
    J Immunother Cancer; 2019 Dec; 7(1):340. PubMed ID: 31801627
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Anti-SIRPα antibody immunotherapy enhances neutrophil and macrophage antitumor activity.
    Ring NG; Herndler-Brandstetter D; Weiskopf K; Shan L; Volkmer JP; George BM; Lietzenmayer M; McKenna KM; Naik TJ; McCarty A; Zheng Y; Ring AM; Flavell RA; Weissman IL
    Proc Natl Acad Sci U S A; 2017 Dec; 114(49):E10578-E10585. PubMed ID: 29158380
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Targeting macrophage checkpoint inhibitor SIRPα for anticancer therapy.
    Liu J; Xavy S; Mihardja S; Chen S; Sompalli K; Feng D; Choi T; Agoram B; Majeti R; Weissman IL; Volkmer JP
    JCI Insight; 2020 Jun; 5(12):. PubMed ID: 32427583
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gentulizumab, a novel anti-CD47 antibody with potent antitumor activity and demonstrates a favorable safety profile.
    Wang T; Wang SQ; Du YX; Sun DD; Liu C; Liu S; Sun YY; Wang HL; Zhang CS; Liu HL; Jin L; Chen XP
    J Transl Med; 2024 Mar; 22(1):220. PubMed ID: 38429732
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Macrocyclic Peptide-Mediated Blockade of the CD47-SIRPα Interaction as a Potential Cancer Immunotherapy.
    Hazama D; Yin Y; Murata Y; Matsuda M; Okamoto T; Tanaka D; Terasaka N; Zhao J; Sakamoto M; Kakuchi Y; Saito Y; Kotani T; Nishimura Y; Nakagawa A; Suga H; Matozaki T
    Cell Chem Biol; 2020 Sep; 27(9):1181-1191.e7. PubMed ID: 32640189
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Discovery of a novel small molecule as CD47/SIRPα and PD-1/PD-L1 dual inhibitor for cancer immunotherapy.
    Jin S; Wang H; Li Y; Yang J; Li B; Shi P; Zhang X; Zhou X; Zhou X; Niu X; Wu M; Wu Y; Zhai W; Qi Y; Gao Y; Zhao W
    Cell Commun Signal; 2024 Mar; 22(1):173. PubMed ID: 38462636
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Selection and Characterization of FD164, a High-Affinity Signal Regulatory Protein
    Wang Z; Hu N; Li X; Wang H; Ren C; Qiao C; Chen G; Wang J; Zhou L; Wu J; Zhang D; Feng J; Shen B; Peng H; Luo L
    Mol Pharmacol; 2021 Sep; 100(3):193-202. PubMed ID: 34315811
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Eradication of Canine Diffuse Large B-Cell Lymphoma in a Murine Xenograft Model with CD47 Blockade and Anti-CD20.
    Weiskopf K; Anderson KL; Ito D; Schnorr PJ; Tomiyasu H; Ring AM; Bloink K; Efe J; Rue S; Lowery D; Barkal A; Prohaska S; McKenna KM; Cornax I; O'Brien TD; O'Sullivan MG; Weissman IL; Modiano JF
    Cancer Immunol Res; 2016 Dec; 4(12):1072-1087. PubMed ID: 27856424
    [TBL] [Abstract][Full Text] [Related]  

  • 16. IgA-Mediated Killing of Tumor Cells by Neutrophils Is Enhanced by CD47-SIRPα Checkpoint Inhibition.
    Treffers LW; Ten Broeke T; Rösner T; Jansen JHM; van Houdt M; Kahle S; Schornagel K; Verkuijlen PJJH; Prins JM; Franke K; Kuijpers TW; van den Berg TK; Valerius T; Leusen JHW; Matlung HL
    Cancer Immunol Res; 2020 Jan; 8(1):120-130. PubMed ID: 31690649
    [TBL] [Abstract][Full Text] [Related]  

  • 17. SIRPα-Antibody Fusion Proteins Selectively Bind and Eliminate Dual Antigen-Expressing Tumor Cells.
    Piccione EC; Juarez S; Tseng S; Liu J; Stafford M; Narayanan C; Wang L; Weiskopf K; Majeti R
    Clin Cancer Res; 2016 Oct; 22(20):5109-5119. PubMed ID: 27126995
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Testing Cancer Immunotherapy in a Human Immune System Mouse Model: Correlating Treatment Responses to Human Chimerism, Therapeutic Variables and Immune Cell Phenotypes.
    Marín-Jiménez JA; Capasso A; Lewis MS; Bagby SM; Hartman SJ; Shulman J; Navarro NM; Yu H; Rivard CJ; Wang X; Barkow JC; Geng D; Kar A; Yingst A; Tufa DM; Dolan JT; Blatchford PJ; Freed BM; Torres RM; Davila E; Slansky JE; Pelanda R; Eckhardt SG; Messersmith WA; Diamond JR; Lieu CH; Verneris MR; Wang JH; Kiseljak-Vassiliades K; Pitts TM; Lang J
    Front Immunol; 2021; 12():607282. PubMed ID: 33854497
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Targeting HDAC6 improves anti-CD47 immunotherapy.
    Gracia-Hernandez M; Yende AS; Gajendran N; Alahmadi Z; Li X; Munoz Z; Tan K; Noonepalle S; Shibata M; Villagra A
    J Exp Clin Cancer Res; 2024 Feb; 43(1):60. PubMed ID: 38414061
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Fully human anti-CD47 antibody SRF231 exerts dual-mechanism antitumor activity via engagement of the activating receptor CD32a.
    Peluso MO; Adam A; Armet CM; Zhang L; O'Connor RW; Lee BH; Lake AC; Normant E; Chappel SC; Hill JA; Palombella VJ; Holland PM; Paterson AM
    J Immunother Cancer; 2020 Apr; 8(1):. PubMed ID: 32345627
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.