These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 38162725)

  • 1. Multiwavelength SERS of Magneto-Plasmonic Nanoparticles Obtained by Combined Laser Ablation and Solvothermal Methods.
    Talaikis M; Mikoliunaite L; Gkouzi AM; Petrikaitė V; Stankevičius E; Drabavičius A; Selskis A; Juškėnas R; Niaura G
    ACS Omega; 2023 Dec; 8(51):49396-49405. PubMed ID: 38162725
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermally Stable Magneto-Plasmonic Nanoparticles for SERS with Tunable Plasmon Resonance.
    Mikoliunaite L; Talaikis M; Michalowska A; Dobilas J; Stankevic V; Kudelski A; Niaura G
    Nanomaterials (Basel); 2022 Aug; 12(16):. PubMed ID: 36014725
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthesis of MBA-Encoded Silver/Silica Core-Shell Nanoparticles as Novel SERS Tags for Biosensing Gibberellin A
    Wei Q; Lin J; Liu F; Wen C; Li N; Huang G; Luo Z
    Sensors (Basel); 2019 Nov; 19(23):. PubMed ID: 31775290
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bifunctional Fe
    Muniz-Miranda M; Gellini C; Giorgetti E; Margheri G
    J Colloid Interface Sci; 2017 Mar; 489():100-105. PubMed ID: 27554173
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Colorimetric and Raman dual-mode lateral flow immunoassay detection of SARS-CoV-2 N protein antibody based on Ag nanoparticles with ultrathin Au shell assembled onto Fe
    Li J; Liang P; Zhao T; Guo G; Zhu J; Wen C; Zeng J
    Anal Bioanal Chem; 2023 Feb; 415(4):545-554. PubMed ID: 36414739
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hybrid Surface-Enhanced Raman Scattering Substrates for the Trace Detection of Ammonium Nitrate, Thiram, and Nile Blue.
    Rathod J; Byram C; Kanaka RK; Sree Satya Bharati M; Banerjee D; Akkanaboina M; Soma VR
    ACS Omega; 2022 May; 7(18):15969-15981. PubMed ID: 35571848
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reduced Self-Aggregation and Improved Stability of Silica-Coated Fe
    Żygieło M; Piotrowski P; Witkowski M; Cichowicz G; Szczytko J; Królikowska A
    Front Chem; 2021; 9():697595. PubMed ID: 34222201
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tailoring Size and Coverage Density of Silver Nanoparticles on Monodispersed Polymer Spheres as Highly Sensitive SERS Substrates.
    Hu Y; Zhao T; Zhu P; Zhu Y; Liang X; Sun R; Wong CP
    Chem Asian J; 2016 Sep; 11(17):2428-35. PubMed ID: 27511618
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Magnetic-plasmonic Ni@Au core-shell nanoparticle arrays and their SERS properties.
    Wang L; Wang Z; Li L; Zhang J; Liu J; Hu J; Wu X; Weng Z; Chu X; Li J; Qiao Z
    RSC Adv; 2020 Jan; 10(5):2661-2669. PubMed ID: 35496119
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dependence of SERS enhancement on the chemical composition and structure of Ag/Au hybrid nanoparticles.
    Chaffin E; O'Connor RT; Barr J; Huang X; Wang Y
    J Chem Phys; 2016 Aug; 145(5):054706. PubMed ID: 27497571
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Facile synthesis of silver/gold alloy nanoparticles for ultra-sensitive rhodamine B detection.
    Ha Pham TT; Dien ND; Vu XH
    RSC Adv; 2021 Jun; 11(35):21475-21488. PubMed ID: 35478817
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The structural transition of bimetallic Ag-Au from core/shell to alloy and SERS application.
    Ha Pham TT; Vu XH; Dien ND; Trang TT; Van Truong N; Thanh TD; Tan PM; Ca NX
    RSC Adv; 2020 Jun; 10(41):24577-24594. PubMed ID: 35516184
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cubic Silver Nanoparticles Fixed on TiO
    Ambroziak R; Hołdyński M; Płociński T; Pisarek M; Kudelski A
    Materials (Basel); 2019 Oct; 12(20):. PubMed ID: 31623068
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Plasmonic Pollen Grain Nanostructures: A Three-Dimensional Surface-Enhanced Raman Scattering (SERS)-Active Substrate.
    Hossain MK; Drmosh QA; Mohamedkhair AK
    Chem Asian J; 2021 Jul; 16(13):1807-1819. PubMed ID: 34009749
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Defective Graphene/Plasmonic Nanoparticle Hybrids for Surface-Enhanced Raman Scattering Sensors.
    Biroju RK; Marepally BC; Malik P; Dhara S; Gengan S; Maity D; Narayanan TN; Giri PK
    ACS Omega; 2023 Jan; 8(4):4344-4356. PubMed ID: 36743051
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A SERS and electrical sensor from gas-phase generated Ag nanoparticles self-assembled on planar substrates.
    Wang S; Tay LL; Liu H
    Analyst; 2016 Mar; 141(5):1721-33. PubMed ID: 26824092
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Facile Synthesis of Au-Coated Magnetic Nanoparticles and Their Application in Bacteria Detection via a SERS Method.
    Wang J; Wu X; Wang C; Rong Z; Ding H; Li H; Li S; Shao N; Dong P; Xiao R; Wang S
    ACS Appl Mater Interfaces; 2016 Aug; 8(31):19958-67. PubMed ID: 27420923
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Surface-enhanced Raman scattering studies of Cu/Cu
    Dizajghorbani Aghdam H; Moemen Bellah S; Malekfar R
    Spectrochim Acta A Mol Biomol Spectrosc; 2019 Dec; 223():117379. PubMed ID: 31323492
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spectroscopic and Microscopic Analyses of Fe
    Muniz-Miranda M; Muniz-Miranda F; Giorgetti E
    Nanomaterials (Basel); 2020 Jan; 10(1):. PubMed ID: 31936852
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Plasmonic nanosnowmen with a conductive junction as highly tunable nanoantenna structures and sensitive, quantitative and multiplexable surface-enhanced Raman scattering probes.
    Lee JH; You MH; Kim GH; Nam JM
    Nano Lett; 2014 Nov; 14(11):6217-25. PubMed ID: 25275930
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.