These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 38162756)

  • 1. Automated Generation of a Compact Chemical Kinetic Model for
    Amiri V; Asatryan R; Swihart M
    ACS Omega; 2023 Dec; 8(51):49098-49114. PubMed ID: 38162756
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A comprehensive experimental and detailed chemical kinetic modelling study of 2,5-dimethylfuran pyrolysis and oxidation.
    Somers KP; Simmie JM; Gillespie F; Conroy C; Black G; Metcalfe WK; Battin-Leclerc F; Dirrenberger P; Herbinet O; Glaude PA; Dagaut P; Togbé C; Yasunaga K; Fernandes RX; Lee C; Tripathi R; Curran HJ
    Combust Flame; 2013 Nov; 160(11):2291-318. PubMed ID: 24273333
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Experimental and Kinetic Modeling Study on High-Temperature Autoignition of Cyclohexene.
    Liang J; Li F; Cao S; Li X; He R; Jia MX; Wang QD
    ACS Omega; 2022 Aug; 7(32):28118-28128. PubMed ID: 35990477
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chemical kinetic simulation of kerosene combustion in an individual flame tube.
    Zeng W; Liang S; Li HX; Ma HA
    J Adv Res; 2014 May; 5(3):357-66. PubMed ID: 25685503
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comprehensive Comparison of the Combustion Behavior for Low-Temperature Combustion of
    Guo J; Peng W; Zhang S; Lei J; Jing J; Xiao R; Tang S
    ACS Omega; 2020 Mar; 5(10):4924-4936. PubMed ID: 32201778
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Combustion in the future: The importance of chemistry.
    Kohse-Höinghaus K
    Proc Combust Inst; 2020 Sep; ():. PubMed ID: 33013234
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Revisiting the Kinetics and Thermodynamics of the Low-Temperature Oxidation Pathways of Alkanes: A Case Study of the Three Pentane Isomers.
    Bugler J; Somers KP; Silke EJ; Curran HJ
    J Phys Chem A; 2015 Jul; 119(28):7510-27. PubMed ID: 25798548
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Construction of a Chemical Kinetic Model of Five-Component Gasoline Surrogates under Lean Conditions.
    Yang C; Zheng Z
    Molecules; 2022 Feb; 27(3):. PubMed ID: 35164345
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Application of static integrated skeletal reduction and tabulation of dynamic adaptive chemistry in the combustion simulation of ethylene-fueled scramjet combustor.
    Li Z; Liu J; Wang J
    RSC Adv; 2024 May; 14(21):15058-15070. PubMed ID: 38720967
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The kinetic model of cyclohexene-air combustion over a wide temperature range.
    Lu H; Kong W; Zhang C; Wang J; Li X
    RSC Adv; 2021 Dec; 11(63):39907-39916. PubMed ID: 35494125
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Experimental and Modeling Study on the Ignition Kinetics of Nitromethane behind Reflected Shock Waves.
    Zhang Y; Zhao Z; Ma R; Liang J; Yao Q; Wang QD; Zhao F
    ACS Omega; 2023 Oct; 8(42):39749-39758. PubMed ID: 37901537
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of a Chemical-Kinetic Mechanism of a Four-Component Surrogate Fuel for RP-3 Kerosene.
    Yu B; Jiang X; He D; Wang C; Wang Z; Cai Y; Yu J; Yu JJ
    ACS Omega; 2021 Sep; 6(36):23485-23494. PubMed ID: 34549146
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A shock-tube experimental and kinetic simulation study on the autoignition of methane at ultra-lean and lean conditions.
    Zhao Z; Wang Y; Zhang J; Liang J; Zhang Y; Zhao F; Wang QD
    Heliyon; 2024 Jul; 10(14):e34204. PubMed ID: 39100463
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A high temperature and atmospheric pressure experimental and detailed chemical kinetic modelling study of 2-methyl furan oxidation.
    Somers KP; Simmie JM; Gillespie F; Burke U; Connolly J; Metcalfe WK; Battin-Leclerc F; Dirrenberger P; Herbinet O; Glaude PA; Curran HJ
    Proc Combust Inst; 2013 Jan; 34(1):225-232. PubMed ID: 23814505
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of models for the low temperature combustion of alkanes through interpretation of pressure-temperature ignition diagrams.
    Hughes KJ; Griffiths JF; Fairweather M; Tomlin AS
    Phys Chem Chem Phys; 2006 Jul; 8(27):3197-210. PubMed ID: 16902712
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A comprehensive and compact n-heptane oxidation model derived using chemical lumping.
    Ahmed SS; Mauss F; Moréac G; Zeuch T
    Phys Chem Chem Phys; 2007 Mar; 9(9):1107-26. PubMed ID: 17311154
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Compact Combustion Mechanisms of Typical
    Shentu J; Lu Y; Li Y; Li J; Mao Y; Li X
    Molecules; 2023 Nov; 28(23):. PubMed ID: 38067426
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Combustion of
    Pelucchi M; Namysl S; Ranzi E; Rodriguez A; Rizzo C; Somers KP; Zhang Y; Herbinet O; Curran HJ; Battin-Leclerc F; Faravelli T
    Energy Fuels; 2020 Nov; 34(11):14688-14707. PubMed ID: 33250570
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reactions of Ethynyloxy Radical with Hydroperoxyl Radical: Bridging Theoretical Reaction Dynamics and Chemical Modeling of Combustion.
    Guo J; Tan N; Chen L; Tang S; Tang A
    Chemphyschem; 2024 Feb; 25(3):e202300515. PubMed ID: 37991746
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modeling Ignition of a Heptane Isomer: Improved Thermodynamics, Reaction Pathways, Kinetics, and Rate Rule Optimizations for 2-Methylhexane.
    Mohamed SY; Cai L; Khaled F; Banyon C; Wang Z; Al Rashidi MJ; Pitsch H; Curran HJ; Farooq A; Sarathy SM
    J Phys Chem A; 2016 Apr; 120(14):2201-17. PubMed ID: 26998618
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.