These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 38162776)

  • 1. Experimental Investigation on the Pyrolysis and Conversion Characteristics of Organic-Rich Shale by Supercritical Water.
    Yao C; Meng F; Zhang H; Di T; Zhou Y; Du X
    ACS Omega; 2023 Dec; 8(51):49046-49056. PubMed ID: 38162776
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative study on the pyrolysis behavior and pyrolysate characteristics of Fushun oil shale during anhydrous pyrolysis and sub/supercritical water pyrolysis.
    Lu Y; Wang Z; Kang Z; Li W; Yang D; Zhao Y
    RSC Adv; 2022 Jun; 12(26):16329-16341. PubMed ID: 35747525
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Release Mechanism of Volatile Products from Oil Shale Pressure-Controlled Pyrolysis Induced by Supercritical Carbon Dioxide.
    Zhao S; Su J; Wu J; Xiaoshu L
    ACS Omega; 2022 Dec; 7(50):47330-47340. PubMed ID: 36570204
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermal Behavior of Oil Shale Pyrolysis under Low-Temperature Co-Current Oxidizing Conditions.
    Guo W; Yang Q; Zhang X; Xu S; Deng S; Li Q
    ACS Omega; 2021 Jul; 6(28):18074-18083. PubMed ID: 34308041
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Study on Pyrolysis-Mechanics-Seepage Behavior of Oil Shale in a Closed System Subject to Real-Time Temperature Variations.
    Wang L; Su J; Yang D
    Materials (Basel); 2022 Aug; 15(15):. PubMed ID: 35955300
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kinetics and thermodynamics evaluation of carbon dioxide enhanced oil shale pyrolysis.
    Zhao S; Sun Y; Lü X; Li Q
    Sci Rep; 2021 Jan; 11(1):516. PubMed ID: 33436832
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Release characteristics of Pb and BETX from in situ oil shale transformation on groundwater environment.
    Wang H; Zhang W; Qiu S; Liang X
    Sci Rep; 2021 Aug; 11(1):16166. PubMed ID: 34373512
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of Associated Minerals on the Co-Current Oxidizing Pyrolysis of Oil Shale in a Low-Temperature Stage.
    Yang Q; Guo M; Guo W
    ACS Omega; 2021 Sep; 6(37):23988-23997. PubMed ID: 34568677
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Shale gas reserve evaluation by laboratory pyrolysis and gas holding capacity consistent with field data.
    Whitelaw P; Uguna CN; Stevens LA; Meredith W; Snape CE; Vane CH; Moss-Hayes V; Carr AD
    Nat Commun; 2019 Aug; 10(1):3659. PubMed ID: 31431625
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermodynamic mechanism evaluate the feasibility of oil shale pyrolysis by topochemical heat.
    Zhao S; Lü X; Sun Y; Huang J
    Sci Rep; 2021 Mar; 11(1):5365. PubMed ID: 33686148
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Elemental Composition and Organic Petrology of a Lower Carboniferous-Age Freshwater Oil Shale in Nova Scotia, Canada.
    Goodarzi F; Gentzis T; Sanei H; Pedersen PK
    ACS Omega; 2019 Dec; 4(24):20773-20786. PubMed ID: 31858064
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [FTIR analysis of oil shales from Huadian Jilin and their pyrolysates].
    Xie FF; Wang Z; Song WL; Lin WG
    Guang Pu Xue Yu Guang Pu Fen Xi; 2011 Jan; 31(1):91-4. PubMed ID: 21428064
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of Effective Pyrolysis Zone and Heat Loss in Oil Shale Reservoir with Random Fractures.
    Yu H; Tang J; Zhang X; Ren L; Zhang X
    ACS Omega; 2023 Dec; 8(48):45687-45699. PubMed ID: 38075776
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A novel energy-efficient pyrolysis process: self-pyrolysis of oil shale triggered by topochemical heat in a horizontal fixed bed.
    Sun YH; Bai FT; Lü XS; Li Q; Liu YM; Guo MY; Guo W; Liu BC
    Sci Rep; 2015 Feb; 5():8290. PubMed ID: 25656294
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Performance Prediction and Heating Parameter Optimization of Organic-Rich Shale In Situ Conversion Based on Numerical Simulation and Artificial Intelligence Algorithms.
    Liu Y; Yao C; Liu B; Xuan Y; Du X
    ACS Omega; 2024 Apr; 9(13):15511-15526. PubMed ID: 38585092
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Co-Pyrolysis of Estonian Oil Shale with Polymer Wastes.
    Pihl O; Khaskhachikh V; Kravetskaja J; Niidu A; Siirde A
    ACS Omega; 2021 Nov; 6(47):31658-31666. PubMed ID: 34869989
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Study on the Spectrum Research on the Process of Oil Shale Pyrolysis].
    Lan XZ; Luo WJ; Song YH; Zhang QL; Zhou J
    Guang Pu Xue Yu Guang Pu Fen Xi; 2016 Apr; 36(4):1121-6. PubMed ID: 30052011
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of Petroleum Generation and Retention on Nanopore Structure Change in Laminated and Massive Shales-Insights from Hydrous Pyrolysis of Lacustrine Source Rocks from the Permian Lucaogou Formation.
    He D; Yang G; Xiang B; Zeng J; Ma W; Qiao J; Wang M; Liu Y
    ACS Omega; 2023 Mar; 8(10):9154-9169. PubMed ID: 36936336
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of maturity and mineralogy on fluid-rock reactions in the Marcellus Shale.
    Pilewski J; Sharma S; Agrawal V; Hakala JA; Stuckman MY
    Environ Sci Process Impacts; 2019 May; 21(5):845-855. PubMed ID: 30840020
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Study of the effect of
    Xinmin W; Qing W; Chunlei W
    RSC Adv; 2022 Jul; 12(31):20239-20250. PubMed ID: 35919599
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.