BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 38162798)

  • 1. Comparative Experimental Study of Fracture Conductivity of Carbonate Rocks under Different Stimulation Types.
    Xiao H; Xia X; Wang C; Tan X; Zhang H
    ACS Omega; 2023 Dec; 8(51):49175-49190. PubMed ID: 38162798
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impacts of Proppant Flowback on Fracture Conductivity in Different Fracturing Fluids and Flowback Conditions.
    Guo S; Wang B; Li Y; Hao H; Zhang M; Liang T
    ACS Omega; 2022 Mar; 7(8):6682-6690. PubMed ID: 35252663
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of Proppant Size on the Proppant Embedment Depth.
    Ding X; Wang T; Dong M; Chen N
    ACS Omega; 2022 Oct; 7(39):35044-35054. PubMed ID: 36211084
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hydraulic fracturing: New uncertainty based modeling approach for process design using Monte Carlo simulation technique.
    Quosay AA; Knez D; Ziaja J
    PLoS One; 2020; 15(7):e0236726. PubMed ID: 32726370
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A comparative study of fracture conductivity prediction using ensemble methods in the acid fracturing treatment in oil wells.
    Kharazi Esfahani P; Akbari M; Khalili Y
    Sci Rep; 2024 Jan; 14(1):648. PubMed ID: 38182684
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Machine Learning-Based Propped Fracture Conductivity Correlations of Several Shale Formations.
    Desouky M; Tariq Z; Aljawad MS; Alhoori H; Mahmoud M; Abdulraheem A
    ACS Omega; 2021 Jul; 6(29):18782-18792. PubMed ID: 34337218
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mineralogy Impact on Acid Fracture Design in Naturally Fractured Carbonates.
    Aljawad MS
    ACS Omega; 2023 Apr; 8(13):12194-12205. PubMed ID: 37033810
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Preparation and characterization of a self-suspending ultra-low density proppant.
    Luo Z; Li J; Zhao L; Zhang N; Chen X; Miao W; Chen W; Liang C
    RSC Adv; 2021 Oct; 11(52):33083-33092. PubMed ID: 35493584
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Study on the Mechanism of Nanoemulsion Removal of Water Locking Damage and Compatibility of Working Fluids in Tight Sandstone Reservoirs.
    Wang J; Li Y; Zhou F; Yao E; Zhang L; Yang H
    ACS Omega; 2020 Feb; 5(6):2910-2919. PubMed ID: 32095713
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pore-Scale Study of Wettability Alteration and Fluid Flow in Propped Fractures of Ultra-Tight Carbonates.
    Elkhatib O; Xie Y; Mohamed A; Arshadi M; Piri M; Goual L
    Langmuir; 2023 Feb; 39(5):1870-1884. PubMed ID: 36693109
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biomimicry Surface-Coated Proppant with Self-Suspending and Targeted Adsorption Ability.
    Lan W; Niu Y; Sheng M; Lu Z; Yuan Y; Zhang Y; Zhou Y; Xu Q
    ACS Omega; 2020 Oct; 5(40):25824-25831. PubMed ID: 33073107
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influences of real-time acid-rock reaction heat on etched fracture dimensions during acid fracturing of carbonate reservoirs and field applications.
    Liu H; Baletabieke B; Wang G; Guo J; Xia F; Chen Z
    Heliyon; 2022 Nov; 8(11):e11659. PubMed ID: 36439746
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Experimental investigation on fracturing effects in hydraulic sand fracturing with acoustic emission and 3d laser scanning.
    Zhang S; Wang C; Zhu G; Gao G; Zhou H
    Sci Rep; 2023 Jul; 13(1):11539. PubMed ID: 37460604
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Proppant Settlement and Long-Term Conductivity Calculation in Complex Fractures.
    Wang X; Zhang X; Zhang M; Zhang Q; Dong P; Ding H; Liu X
    ACS Omega; 2024 Mar; 9(11):12789-12800. PubMed ID: 38524481
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Investigation and Application of High-Efficiency Network Fracturing Technology for Deep Shale Gas in the Southern Sichuan Basin.
    Zhao Z; Zheng Y; Zeng B; Song Y
    ACS Omega; 2022 Apr; 7(16):14276-14282. PubMed ID: 35573210
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantifying the Economic Impact of Hydraulic Fracturing Proppant Selection in Light of Occupational Exposure Risk and Functional Requirements.
    Agrawal S; Gernand JM
    Risk Anal; 2020 Feb; 40(2):319-335. PubMed ID: 31858619
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fracturing-Fluid Flowback Simulation with Consideration of Proppant Transport in Hydraulically Fractured Shale Wells.
    Wang F; Chen Q; Lyu X; Zhang S
    ACS Omega; 2020 Apr; 5(16):9491-9502. PubMed ID: 32363301
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hydraulic Fracturing Experiment Investigation for the Application of Geothermal Energy Extraction.
    Cheng Y; Zhang Y
    ACS Omega; 2020 Apr; 5(15):8667-8686. PubMed ID: 32337430
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assessment of the Suitability of Coke Material for Proppants in the Hydraulic Fracturing of Coals.
    Suponik T; Labus K; Morga R
    Materials (Basel); 2023 May; 16(11):. PubMed ID: 37297217
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Experimental Investigation on the Fracture Conductivity Behavior of Quartz Sand and Ceramic Mixed Proppants.
    Sun H; He B; Xu H; Zhou F; Zhang M; Li H; Yin G; Chen S; Xu X; Li B
    ACS Omega; 2022 Mar; 7(12):10243-10254. PubMed ID: 35382273
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.