These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
207 related articles for article (PubMed ID: 38163183)
1. Comparison of risk prediction models for the progression of pelvic inflammatory disease patients to sepsis: Cox regression model and machine learning model. Wang Q; Sun J; Liu X; Ping Y; Feng C; Liu F; Feng X Heliyon; 2024 Jan; 10(1):e23148. PubMed ID: 38163183 [TBL] [Abstract][Full Text] [Related]
2. [Development and validation of a prognostic model for patients with sepsis in intensive care unit]. Jiang Z; Wang H; Wang S; Guan C; Qu Y Zhonghua Wei Zhong Bing Ji Jiu Yi Xue; 2023 Aug; 35(8):800-806. PubMed ID: 37593856 [TBL] [Abstract][Full Text] [Related]
3. Prediction of mortality in pneumonia patients with connective tissue disease treated with glucocorticoids or/and immunosuppressants by machine learning. Li D; Ding L; Luo J; Li QG Front Immunol; 2023; 14():1192369. PubMed ID: 37304293 [TBL] [Abstract][Full Text] [Related]
4. [Correlation between blood pressure indexes and prognosis in sepsis patients: a cohort study based on MIMIC-III database]. Liu X; Zhao Y; Qin Y; Ma Q; Wang Y; Weng Z; Zhu F Zhonghua Wei Zhong Bing Ji Jiu Yi Xue; 2023 Jun; 35(6):578-585. PubMed ID: 37366122 [TBL] [Abstract][Full Text] [Related]
5. Which model is better in predicting the survival of laryngeal squamous cell carcinoma?: Comparison of the random survival forest based on machine learning algorithms to Cox regression: analyses based on SEER database. Sun H; Wu S; Li S; Jiang X Medicine (Baltimore); 2023 Mar; 102(10):e33144. PubMed ID: 36897699 [TBL] [Abstract][Full Text] [Related]
6. An early warning model for predicting major adverse kidney events within 30 days in sepsis patients. Yu X; Xin Q; Hao Y; Zhang J; Ma T Front Med (Lausanne); 2023; 10():1327036. PubMed ID: 38469459 [TBL] [Abstract][Full Text] [Related]
7. Prediction of prognosis in elderly patients with sepsis based on machine learning (random survival forest). Zhang L; Huang T; Xu F; Li S; Zheng S; Lyu J; Yin H BMC Emerg Med; 2022 Feb; 22(1):26. PubMed ID: 35148680 [TBL] [Abstract][Full Text] [Related]
8. Development of a Nomogram to Predict 28-Day Mortality of Patients With Sepsis-Induced Coagulopathy: An Analysis of the MIMIC-III Database. Lu Z; Zhang J; Hong J; Wu J; Liu Y; Xiao W; Hua T; Yang M Front Med (Lausanne); 2021; 8():661710. PubMed ID: 33889591 [No Abstract] [Full Text] [Related]
9. A predictive model for the risk of sepsis within 30 days of admission in patients with traumatic brain injury in the intensive care unit: a retrospective analysis based on MIMIC-IV database. Hu F; Zhu J; Zhang S; Wang C; Zhang L; Zhou H; Shi H Eur J Med Res; 2023 Aug; 28(1):290. PubMed ID: 37596695 [TBL] [Abstract][Full Text] [Related]
10. Development of a nomogram to predict 30-day mortality of sepsis patients with gastrointestinal bleeding: An analysis of the MIMIC-IV database. Sun B; Man YL; Zhou QY; Wang JD; Chen YM; Fu Y; Chen ZH Heliyon; 2024 Feb; 10(4):e26185. PubMed ID: 38404864 [TBL] [Abstract][Full Text] [Related]
11. Construction and Evaluation of a Sepsis Risk Prediction Model for Urinary Tract Infection. Zhang L; Zhang F; Xu F; Wang Z; Ren Y; Han D; Lyu J; Yin H Front Med (Lausanne); 2021; 8():671184. PubMed ID: 34095176 [No Abstract] [Full Text] [Related]
12. Development and validation of machine learning models for predicting prognosis and guiding individualized postoperative chemotherapy: A real-world study of distal cholangiocarcinoma. Wang D; Pan B; Huang JC; Chen Q; Cui SP; Lang R; Lyu SC Front Oncol; 2023; 13():1106029. PubMed ID: 37007095 [TBL] [Abstract][Full Text] [Related]
13. Predicting 30-days mortality for MIMIC-III patients with sepsis-3: a machine learning approach using XGboost. Hou N; Li M; He L; Xie B; Wang L; Zhang R; Yu Y; Sun X; Pan Z; Wang K J Transl Med; 2020 Dec; 18(1):462. PubMed ID: 33287854 [TBL] [Abstract][Full Text] [Related]
14. Construction and validation of a risk assessment model for acute kidney injury in patients with acute pancreatitis in the intensive care unit. Jiang Z; An X; Li Y; Xu C; Meng H; Qu Y BMC Nephrol; 2023 Oct; 24(1):315. PubMed ID: 37884898 [TBL] [Abstract][Full Text] [Related]
15. A nomogram to predict 28-day mortality in patients with sepsis combined coronary artery disease: retrospective study based on the MIMIC-III database. Gu Q; Huang P; Yang Q; Meng X; Zhao M Front Med (Lausanne); 2024; 11():1433809. PubMed ID: 39296895 [TBL] [Abstract][Full Text] [Related]
16. Predictors and nomogram of in-hospital mortality in sepsis-induced myocardial injury: a retrospective cohort study. Xu KZ; Xu P; Li JJ; Zuo AF; Wang SB; Han F BMC Anesthesiol; 2023 Jul; 23(1):230. PubMed ID: 37420185 [TBL] [Abstract][Full Text] [Related]
17. One-year mortality prediction for patients with sepsis: a nomogram integrating lactic dehydrogenase and clinical characteristics. Wang J; Fei W; Song Q BMC Infect Dis; 2023 Oct; 23(1):668. PubMed ID: 37807068 [TBL] [Abstract][Full Text] [Related]
18. A predictive model for the identification of the risk of sepsis in patients with Gram-positive bacteria in the intensive care unit. Chen X; Zhou Y; Luo L; Peng X; Xiang T J Thorac Dis; 2023 Sep; 15(9):4896-4913. PubMed ID: 37868898 [TBL] [Abstract][Full Text] [Related]
19. Explainable ensemble machine learning model for prediction of 28-day mortality risk in patients with sepsis-associated acute kidney injury. Yang J; Peng H; Luo Y; Zhu T; Xie L Front Med (Lausanne); 2023; 10():1165129. PubMed ID: 37275353 [TBL] [Abstract][Full Text] [Related]
20. Establishment of a prognostic model for patients with sepsis based on SOFA: a retrospective cohort study. Liu H; Zhang L; Xu F; Li S; Wang Z; Han D; Zhang F; Lyu J; Yin H J Int Med Res; 2021 Sep; 49(9):3000605211044892. PubMed ID: 34586931 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]