These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
158 related articles for article (PubMed ID: 38163186)
1. Additive manufacturing of NiTi shape memory alloy and its industrial applications. Dzogbewu TC; de Beer DJ Heliyon; 2024 Jan; 10(1):e23369. PubMed ID: 38163186 [TBL] [Abstract][Full Text] [Related]
2. Superelastic NiTi Functional Components by High-Precision Laser Powder Bed Fusion Process: The Critical Roles of Energy Density and Minimal Feature Size. Qu S; Wang L; Ding J; Fu J; Gao S; Ma Q; Liu H; Fu M; Lu Y; Song X Micromachines (Basel); 2023 Jul; 14(7):. PubMed ID: 37512747 [TBL] [Abstract][Full Text] [Related]
3. Investigation into the Hybrid Production of a Superelastic Shape Memory Alloy with Additively Manufactured Structures for Medical Implants. Hamann I; Gebhardt F; Eisenhut M; Koch P; Thielsch J; Rotsch C; Drossel WG; Heyde CE; Leimert M Materials (Basel); 2021 Jun; 14(11):. PubMed ID: 34198784 [TBL] [Abstract][Full Text] [Related]
4. In vitro evaluation of the biocompatibility and bioactivity of a SLM-fabricated NiTi alloy with superior tensile property. Sun Y; Zhang Z; Liu Q; Ren L; Wang J J Mater Sci Mater Med; 2024 Aug; 35(1):52. PubMed ID: 39177838 [TBL] [Abstract][Full Text] [Related]
5. Fused Filament Fabrication of NiTi Components and Hybridization with Laser Powder Bed Fusion for Filigree Structures. Abel J; Mannschatz A; Teuber R; Müller B; Al Noaimy O; Riecker S; Thielsch J; Matthey B; Weißgärber T Materials (Basel); 2021 Aug; 14(16):. PubMed ID: 34442922 [TBL] [Abstract][Full Text] [Related]
6. Achieving superelasticity in additively manufactured NiTi in compression without post-process heat treatment. Shayesteh Moghaddam N; Saedi S; Amerinatanzi A; Hinojos A; Ramazani A; Kundin J; Mills MJ; Karaca H; Elahinia M Sci Rep; 2019 Jan; 9(1):41. PubMed ID: 30631084 [TBL] [Abstract][Full Text] [Related]
7. A Review on Traditional Processes and Laser Powder Bed Fusion of Aluminum Alloy Microstructures, Mechanical Properties, Costs, and Applications. Wang X; Zhang D; Li A; Yi D; Li T Materials (Basel); 2024 May; 17(11):. PubMed ID: 38893817 [TBL] [Abstract][Full Text] [Related]
8. Heat Treatment of NiTi Alloys Fabricated Using Laser Powder Bed Fusion (LPBF) from Elementally Blended Powders. Chmielewska A; Wysocki B; Kwaśniak P; Kruszewski MJ; Michalski B; Zielińska A; Adamczyk-Cieślak B; Krawczyńska A; Buhagiar J; Święszkowski W Materials (Basel); 2022 May; 15(9):. PubMed ID: 35591638 [TBL] [Abstract][Full Text] [Related]
9. Structure, Martensitic Transformation, and Damping Properties of Functionally Graded NiTi Shape Memory Alloys Fabricated by Laser Powder Bed Fusion. Jiang H; Xi R; Li X; Kustov S; Van Humbeeck J; Wang X Materials (Basel); 2022 Jul; 15(14):. PubMed ID: 35888542 [TBL] [Abstract][Full Text] [Related]
10. A Review on Additive Manufacturing Methods for NiTi Shape Memory Alloy Production. Kubášová K; Drátovská V; Losertová M; Salvetr P; Kopelent M; Kořínek F; Havlas V; Džugan J; Daniel M Materials (Basel); 2024 Mar; 17(6):. PubMed ID: 38541402 [TBL] [Abstract][Full Text] [Related]
11. Microstructure and Mechanical Properties of NiTi-Based Eutectic Shape Memory Alloy Produced via Selective Laser Melting In-Situ Alloying by Nb. Polozov I; Popovich A Materials (Basel); 2021 May; 14(10):. PubMed ID: 34065582 [TBL] [Abstract][Full Text] [Related]
12. A Review of Selective Laser Melted NiTi Shape Memory Alloy. Khoo ZX; Liu Y; An J; Chua CK; Shen YF; Kuo CN Materials (Basel); 2018 Mar; 11(4):. PubMed ID: 29596320 [TBL] [Abstract][Full Text] [Related]
13. Mechanical and shape memory properties of porous Ni Taheri Andani M; Saedi S; Turabi AS; Karamooz MR; Haberland C; Karaca HE; Elahinia M J Mech Behav Biomed Mater; 2017 Apr; 68():224-231. PubMed ID: 28189977 [TBL] [Abstract][Full Text] [Related]
14. Chemical Polishing of Additively Manufactured, Porous, Nickel-Titanium Skeletal Fixation Plates. Chmielewska A; Jahadakbar A; Wysocki B; Elahinia M; Święszkowski W; Dean D 3D Print Addit Manuf; 2022 Aug; 9(4):269-277. PubMed ID: 36660233 [TBL] [Abstract][Full Text] [Related]
15. Effect of Laser Scanning Speed on the Microstructure and Mechanical Properties of Laser-Powder-Bed-Fused K418 Nickel-Based Alloy. Chen Z; Lu Y; Luo F; Zhang S; Wei P; Yao S; Wang Y Materials (Basel); 2022 Apr; 15(9):. PubMed ID: 35591384 [TBL] [Abstract][Full Text] [Related]
16. A Short Review on the Microstructure, Transformation Behavior and Functional Properties of NiTi Shape Memory Alloys Fabricated by Selective Laser Melting. Wang X; Kustov S; Van Humbeeck J Materials (Basel); 2018 Sep; 11(9):. PubMed ID: 30208641 [TBL] [Abstract][Full Text] [Related]
17. Research Progress on Laser Powder Bed Fusion Additive Manufacturing of Zinc Alloys. Meng F; Du Y Materials (Basel); 2024 Aug; 17(17):. PubMed ID: 39274701 [TBL] [Abstract][Full Text] [Related]
18. Research Status and Prospect of Additive Manufactured Nickel-Titanium Shape Memory Alloys. Wen S; Gan J; Li F; Zhou Y; Yan C; Shi Y Materials (Basel); 2021 Aug; 14(16):. PubMed ID: 34443019 [TBL] [Abstract][Full Text] [Related]
19. A Review on Design and Mechanical Properties of Additively Manufactured NiTi Implants for Orthopedic Applications. Zhang Y; Attarilar S; Wang L; Lu W; Yang J; Fu Y Int J Bioprint; 2021; 7(2):340. PubMed ID: 33997434 [TBL] [Abstract][Full Text] [Related]
20. Mechanical Properties of Bulk Metallic Glasses Additively Manufactured by Laser Powder Bed Fusion: A Review. Luo H; Du Y Materials (Basel); 2023 Nov; 16(21):. PubMed ID: 37959631 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]